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Abstract 

The principal constants and related information used in space trajectory and 
navigation calculations are discussed. The values of these constants presently 
adopted at JPL are described and estimates of their accuracy are provided. 

JPL TECHNICAL REPORT 32-1306 vii 



Constants a n d  Related Information for 
Astrodynamic Calculations, 1968 

1. Introduction 

The purpose of this report is to provide a current set 
of principal constants and related information for use in 
the generation of space trajectories and orbit deter- 
mination processes. It is important in astrodynamic 
calculations to use the most accurate set of constants 
available and to have, wherever practicable, uniform 
adoption of this set throughout existing software. 

The improvement of the values of astronomical con- 
stants is a continuing and significant undertaking at JPL 
and elsewhere; therefore, in some areas it is difficult to 
pick a definitive set that holds up. Nevertheless, this 
report reflects the JPL state of knowledge as of early 
1968 and is intended to be a definitive source of this 
information for current use at JPL. It supersedes Ref. 1 
and all previous JPL publications regarding astrodynamic 
constants. For consistency, the authors recommend that 
this document be used as a standard throughout NASA. 
It is JPL’s intent to update this document occasionally 
as significant improvements are established. 

Section I1 treats the earth as the observing platform 
and discusses those constants which arise within this 
context. This description includes a consideration of the 

size, shape, and orientation of the earth, timing, station 
locations, and atmospheric and ionospheric models. The 
section also includes a discussion of the gravitational 
potential of the earth. 

Sections I11 and IV treat the constants pertaining to 
the finite extent of the moon, the planets, and the sun. 
Section IV also deals briefly with the known characteris- 
tics and orbital elements of the principal planets and 
planetary satellites. 

Section V treats those quantities that are most com- 
monly designated as astronomical constants. This includes 
a discussion of the IAU system of constants and the JPL 
currently adopted values. Also included are certain 
physical constants and solar radiation pressure constants. 

Section VI discusses the JPL ephemeris system includ- 
ing a description of the Ephemeris Tape System, current 
ephemerides available for export, and current develop- 
mental ephemerides. 

It has been tried, in most cases, to provide a measure 
of the reliability of the constants adopted at JPL. Where 
the improved values have resulted from unique investi- 
gations (e.g., the determination of the mass of Mars from 
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Mariner IV), a precision measure is readily available 
from both formal and empirical error analyses performed 
by the investigators. In these cases, when a precision 
estimate is quoted, it may be considered as a standard 
deviation (1-sigma) that reflects the investigator's consid- 
eration of the error structure in his observations and in 
his mathematical model. For constants which are due 
to the efforts of multiple investigators spread over time 
and by diverse techniques, providing error measures is 
not so straightforward. Where precision estimates are 
given, they may be interpreted as value judgments on 
JPL's part unless otherwise stated. 

II. Earth 

A. External Gravity Potential of the Earth 

In 1961, the IAU adopted a standard form for the 
general case of the expression for the earth's external 
gravity potential (Ref. 2): 

1 {C,, cos mh + S,, sin mi} 

where 

r = radius from center of coordinate system 

+' = geocentric latitude 

A = geographic longitude 

P,, = associated Legendre functions 

GE = geocentric gravitational constant 

a, = equatorial radius 

Since the coefficients are obtained from satellite orbit 
observations, the center of coordinates is taken as the 
dynamical center of mass of the earth, and it can be 
shown that, in this case, the first-degree (n  = 1) harmonics 
are zero. It is often convenient to separate the zonal 
harmonics, J, = - C,,, and, hence, the alternate form: 

u = 2 5  [1 - 5 ($), J,P, (sin+') 
n=z r 

{ c ~  cos rnh + s,, sin m ~ , ]  (2) 

2 

The set of coefficients adopted is selected from solu- 
tions by Kaula (Ref. 3)) and King-Hele and Cook (Refs. 4 
and 5). Values are adopted only for coefficients where 
there is reasonable agreement among various authors' 
solutions. In comparing solutions of Kozai (Ref. 6) with 
those of King-Hele and Cook, it was decided to adopt 
zonal harmonic values up to J7. Values of the even har- 
monics, Jz, J4, and 1 6  are taken from Ref. 4, and are 
obtained from the secular regression of the node of 
14 earth satellites. Values of the odd harmonics are taken 
from Ref. 5, and are obtained from secular perturbations 
of the eccentricity of six earth satellites. The adopted 
values, in units of the sixth decimal, are: 

106 Jz = 1082.7 t O . l  

lo6 J, = -2.56 k O . 1  

lo6 J4 = -1.58 k0.2 

loo J5 = -0.15 k0.2 

lo6 Jo  = 0.59 k0.2 

lo6 J7 = -0.44 20.2 

The quoted accuracies are not strictly those obtained 
in the solution statistics, but also include the effect of 
ignoring higher order harmonics, which is the dominant 
effect on accuracy. 

Strictly, the values of the harmonics depend on the 
adopted values of GE and a,; however, the significant 
figures in the above list are well below the number 
required to reflect probable changes in GE or a,, and, 
therefore, may be considered independent constants. 
It should also be noted that the value of J, is equal to 
that adopted by the IAU in 1964 (Ref. 7). 

Values of the tesseral harmonics are selected from 
those obtained by Kaula (Ref. 3) from Baker-Nunn camera 
observations of five satellites. The adopted set is taken 
through degree 4, the maximum degree for which Kaula's 
solution is complete. Converting from Kaula's normalized 
coefficients, c,, and F,,, by1 

where 

a,, = l f o r m  = 0 

a,, = Oform#O 

'Tables of this factor are given on page 185 of Ref. 17. 
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4 3  
4 4  

Gaposhkin (Ref. 13) 
n m -  

c,, x 1 0 6  S", 

2 2  1.54 -0.871 
3 1  2.1 0 0.29 
3 2  0.25 -0.1 a 
3 3  0.078 0.226 
4 1  -0.54 -0.45 
4 2  0.074 0.1 5 
4 3  0.051 -0.011 
4 4  -0.001 0.0049 

Table 1. JPL-adopted tesseral harmonics 

Kaula Average (Ref. 12) 

c., x 106 s,, 

1.56 -0.878 
1.93 0.19 
0.27 -0.26 
0.079 0.1 98 

-0.53 -0.44 
0.067 0.1 3 
0.055 -0.01 1 

-0.001 0.0068 

x 106 

0.074 

f 0.0 1 
f 0.05 
f 0.03 
fO.01 
+_ 0.03 
fO.01 
f0.004 
- f0.002 

Kaula-Anderle 

C I S  

-0.01 I 0.084 

-0.08 1 0.04 

-0.12 1 0.08 

-0.22 -0.13 

-0.04 1 -0.053 

0.014 1 0.01 
-0.009 1 0.019 
0.00221-0.0049 

The adopted set is as presented in Table 1.2 The 
standard deviations listed by Kaula do not include the 
effects of omitting higher harmonics. From comparisons 
with other solutions for tesseral harmonics (e.g., Refs. 8 
through lo), it would appear that a more meaningful 
accuracy is given by the difference between Kaula's 
results and other recent results, such as Anderle's solu- 
tion from doppler data (Ref. 9). These differences are 
given in Table 1. 

In Ref. 11, Kaula lists several sets of tesserals up to 
degree 6 (page 115) and zonals up to degree 14 (page 117j, 
which may be used if degrees higher than those adopted 
are desired. A complete set of tesseraIs up to degree 8 is 
also given in Ref. 8. The coefficients of Guier and Newton 
are related to the adopted set by: 

(4) 

It should be pointed out, however, that the values of the 
higher degree coefficients are very uncertain, even as 
to the sign of the value. 

In a recent publication (Ref. 12), Kaula comments that 
the current best single set from satellite tracking is by 
Gaposhkin (Ref. 13). He also derives an average set 
that includes data from gravimetric measurements, 
which he claims is the best choice. All three sets agree 
very closely, and it was decided to adopt the more fully 
documented set in Ref. 3. For comparison, the Gaposhkin 

'Since the earth pole is very nearly a principal axis of inertia, C ,  and 
Szl are very nearly zero, and are adopted as such. Actually, the 
values of Czl, Szl, and all other harmonic coefficients, vary slightly 
with time because of variations in the pole location (Fig. 2) .  

values and Kaula's averaged values are presented in 
Table 2. 

B. Figure of the Earth 

The constants of the earth's figure are divided into two 
categories: primary and derived. Primary constants are 
those which are directly observed or computed in terms 
of observations, and are independent from one another. 
In this report, they are: 

(1) a,, equatorial radius of earth's reference ellipsoid. 

(2) GE, geocentric gravitational constant. 

(3) J,, C , ,  and S,,, coefficients of the earth's external 
gravity potential in terms of spherical harmonics 
(see Subsection 11-A). 

Derived constants are those which are computed in 
terms of the primary constants. Although some of these 
may be observable, the computed values are adopted for 
consistency. In this report, they are as follows: 

(1) f, flattening of the earth's reference ellipsoid. 

(2) b, polar radius of the earth's reference ellipsoid. 

(3)  EM, mean radius of the earth's reference ellipsoid. 

(4) g,, equatorial surface gravity acceleration. 

(5) I:,  fourth zonal harmonic of earth's reference ellip- 

(6) w, sidereal rotation rate of the earth. 

soid. 

In addition, useful formulae are presented for several 
parameters of the earth's figure. 

The source for each adopted primary constant is given, 
along with the source values for the standard deviation. 
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References are given for the derivation of equations 
relating the derived constants to the primary constants. 
Standard deviations of the derived constants are com- 
puted in terms of those for the primary constants. 

1. Definitions. The surface of the earth has many defi- 
nitions. For most geodetic purposes, it is defined as that 
surface coinciding with mean sea level, and is called the 
geoid. Where land masses occur, the geoid is defined as 
the surface resulting in imagined narrow ditches con- 
nected to the oceans. The mean surface of the free oceans 
is an equipotential surface resulting from the gravita- 
tional and rotational potential: 

(5 )  
1 
2 w = u + - w2 r2  cos2 +’ 

The geoid is very closely approximated by an ellipsoid 
of revolution. It is convenient to define a reference ellip- 
soid for the earth, and to speak of departures of the 
geoid from the reference ellipsoid. 

An ellipsoid of revolution can be defined in terms of 
GE, a,, and f 

where 

b = polar radius 

The gravity constant, GE, is observed from satellites and 
space probes and is a primary constant. The equatorial 
radius, a,, is a primary constant adopted such that the 
geoid has minimum departures from the reference ellip- 
soid. The flattening, f ,  is a derived constant whose value 
must be such that the potential of the reference ellipsoid 
agrees with that of the geoid. 

The potential of an ellipsoid of revolution may be ex- 
pressed in terms of even zonal harmonics. In the form of 
the geoid potential above: 

u* = - GE [l - J,* ($),P2 (sin +’) - J: (34 
r 

x P4 (sin 4’) * .] + - - gem r2 (1 - P 2 )  
3 ae 

(6)  
where 

The radius of an ellipsoid is given by 

(7) s 

I where terms of 0(f3) are dropped. Substituting into U*, 
the resulting form is (see Ref. 11): 

Since U* is constant (= U,,), the following must be true: 

u, = 0 

u4 = 0 

From the first of these, U ,  = 0, is obtained the defining 
equation for the flattening: 

7; = - 2 f - 3 1 f” - - 1 m + 2- m2 + 21 2 mf + O(P) 
3 3 2 

(9) 

where J: is taken equal to the observed coefficient in the 
external gravity field and is called “dynamical form 
factor,” a primary constant (Ref. 7). Solving for f 
explicitly, 

3 1 9 15 39 
28 56 f = T.lz -k m + sJ; + - Jzm - -mZ 

From U4 = 0 is obtained: 

The value of 1: is generally different from the observed 
value of 1,. This difference enters into the computation 
of geoid heights, discussed below. 

An important derived constant is the equatorial grav- 
ity, g,. From the definition: 

15 --g- I:)  + gem 
au* GE 

(12) 
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or, finally 

(13) 

The term pa is a small correction introduced to account 
for the effect of the atmosphere above the surface 

pa = 0.000001 

It should be noted that, since m is a function of g,, 
Eq. (13) must be solved iteratively. Also, it should be 
pointed out that m is defined slightly differently in some 
other works (Refs. 14 and 15), and some caution must 
be exercised in comparing results. 

The mean radius, as defined here, is an average over 
the area of a sphere 

R, = L/ rdA (14) 
A sphere 

which finally becomes 

2. Adopted primary constants. The adopted values for 
GE, a,, and J, are given in Section V. 

3. Derived constants. From the defining equations 
above : 

+ 0.15 x 10-0 
= 298.250 - 

g, = 978.0264 Z!Z 0.002 cm/s2 

lo6 J4* = -2.35 Z!Z 0.003 

b = 6356775 + 5 m 

R, = 6371017 Z!Z 5 m 

The inertial rotation rate of the earth, w, may be com- 
puted from the adopted number of seconds (s) in the 
tropical year at 1900.0 and the annual rate of precession 
in right ascension (m), as follows: 

deg/sec 360 360 m w=- +--- 
86400 s 240s 

s = 31556925.9747 sec (Ref. 2, page 594, and 
Ref. 16, page 69) (17) 

m = 3.07234 s/tropical year (Ref. 16, page 38) 
(18) 

I 

I Then (Ref. 16, page 76), 

o = 0.004178074216 deg/sec 

(19) = 15.04106718 arc sec/sec or deg/h 

In the above expression for 0, the three terms are, 
respectively: 

(1) The rate of rotation of earth with respect to mean 
sun. 

(2) The rate of revolution of mean sun with respect to 
mean equinox. 

(3)  The motion of the mean equinox along the celestial 
equator with respect to inertial space. 

Although the average length of a day is increasing due 
to tidal friction at an estimated rate of approximately 
1 sec per 100,OOO years, this secular increase is too small 
to be of consequence in this section’s calculations for 
which a value of w is needed (Refer to Sections 11-E and 
11-F on Time for a discussion of the effects of the irregu- 
lar variations in the day). 

4.  Useful formulae. It is often useful to have expres- 
sions for latitude-dependent parameters in terms of series 
expansions, such as on page 58 of Ref. 16. Most such 
expressions found in the literature, however, are in terms 
of the geodetic latitude, 4, whereas in astrodynamics, the 
more fundamental variable is geocentric latitude, 4’. 
Following are some useful formulae, derived in terms of 
the geocentric latitude, along with the numerical values 
of the coefficients, as computed from the adopted value 
of f .  

a. Radius on the ellipsoid. 

1 r = a ,  1 ----f f ’+ f 3  -cos2~’+-ff”cos4cp’ f 3 
2 16 [ 2 16 

= a, [0.99832144 + 0.00167645 cos 24‘ 

+ 0.00000211 cos 44’1 (20) 

JPL TECHNICAL REPORT 32-7306 5 



b. Normal gravity on su~face.~ 

= ge [l + 0.00530244 sin2 +f + 0.00001196 sin2 244 

(21) 

c. Geodetic latitude on surface. 

= 692’.’744 sin 2+f + 1!’159 sin 4# (22) 

For a reasonable height, h, above the reference ellip- 
soid, the geocentric radius is approximately increased by 
h, and + - +‘ remains approximately unchanged (Ref. 16). 
Exact relationships can be obtained from the relations 
(Ref. 16): 

where 

r cos +’ = (C + h) cos + (23) 

r sin +f = (S + h) sin4 (24) 

C = a { cos2 + + (1 - f ) 2  sin2 +}-” 
s = c (1 - f ) 2  

It should be noted that, in Eqs. (23) and (a), h is height 
above the reference ellipsoid. To obtain height above 
mean sea level (height above geoid), h is reduced by the 
geoid height (height of geoid above reference ellipsoid). 

5. Gravity anomalies and geoid heights. The ‘‘/actual” 
surface of the earth, as represented by the geoid, has 
small differences from the reference ellipsoid. A complete 
discussion of these differences is beyond the scope and 
intent of this document. Two aspects, however, are inter- 
esting and fundamental: (1) the difference between the 
surface gravity on the geoid and that on the ellipsoid; 
and (2) the height of the geoid above the ellipsoid. These 
quantities are derived from the disturbing potential, Le., 
the difference between the geoid potential and that of 
the reference ellipsoid: 

= “{ r - J 3  (3, P3 - ( J 4  - 1:) ( - 34 P,  

X P,, [C,, cos mh + S,, sin mh] ) (5) 

From Ref. 17, the gravity on the geoid minus the 
gravity on the ellipsoid, Ag, is: 

=-($+7) 2T 

= = { - 21, (+y P ,  - 3 (I4 - 12) (y- P ,  - 2 (n - 1) J, (>) n + 2  P ,  
n=5 

a: 

+ $$(n - 1) ($),+’ P,, [c,, cos mh + s,, sin mh] 

‘The expression for the normal surface gravity contains a term due to 
a component normal to the radius, i.e., 

The expression differs from that found in Jeffrey’s book (Ref. 14, 
page 137) because of the previously mentioned, slightly different 
definition of m. 

6 

To order f” 

Ag = g ,  Z* (n - 1) P,, [C,, cos mX + S,, sin mh] 

(27) 
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where s* denotes the summation obvious from inspection 
of the above and is carried to as high an order as is con- 
sistent with accuracy of order f " .  

If N denotes the height of the geoid above the ellip- 
soid, then the disturbing potential may be expressed: 

To a good approximation 

T 
go 

N = -  

and to O(f") : 

N = a, Z* P,,, [C,, cos r n ~  + S,,,, sin mA] (30) 

From the above expressions, contours of constant A g  
and N may be calculated and plotted on maps. Examples 
of these plots may be found in Refs. 3, 8, 11, and 14. 

C. Orientation of the Axis of Rotation 

The direction of the rotational axis of earth is not 
fixed in space. The action of sun and moon on the 
equatorial bulge causes a variation in the orientation 
of the equatorial plane, while the perturbative effects of 
the planets produce a variation in the orientation of the 
ecliptic. Once a fundamental inertial reference system 
is specified, it would be sufficient to tabulate the direction 
cosines of the rotational axis with respect to the coordi- 
nate axes. The problem is not treated this way because 
of historical and practical reasons. 

In practice, the motions of the ecliptic and equator are 
both explicitly computed as a matter of observational 
necessity (see Ref. 18 for detailed discussions of these 
motions). Furthermore, the long-term motions that can 
be treated as though they are secular (precession) are 
separated from the short-periodic motions (nutation). 
The fictitious equator, ecliptic, and equinox defined as 
being represented by the precessional motions only are 
called mean, while those affected by both precession and 
nutation are called true. Values fixed at the time cor- 
responding to a fundamental reference are values at the 
epoch, while those referring to instantaneous moments 
are the values of date. 

1.  Precession. The mean equator of date is referred to 
the mean equator at the epoch to by the equatorial pre- 

cession elements [,, Z, 0 (Fig. 1). Although usually 
described in different terms, these quantities may be 
defined as: 

- lo = right ascension of the mean celestial pole 
of date, referred to the mean equator and 
equinox at the epoch. 

180" + Z = right ascension of the mean celestial pole 
at the epoch, referred to the mean equator 
and equinox of date. 

e = 90" - declination (i.e., north polar dis- 
tance) of the mean celestial pole of date, 
referred to the mean equator at the epoch. 

The mean obIiquity F is the inclination of the eclip- 
tic on the mean equator, and represents a simple rotation 
about the x-axis. This quantity also contains a component 
due to precession. 

a. Application. To transform rectangular equatorial 
coordinates referred to the mean equator and equinox 
at to to coordinates referred to the mean equator and 
equinox at time t ,  the following relation should be used: 

where io is the position vector referred to mean equator 
and equinox at the epoch, rg is referred to the mean 
equator and equinox of date, and (Refs. 16 and 18): 

2'11 = COS lo COS e COS Z - sin lo sin Z 

PI, = - sin lo COS 6' cos Z - cos [, sin Z 

P I ,  = - sin e cos Z 

P,, = COS to COS e sin z + sin po cos z 
P, ,  = - sin lo cos 0 sin Z + cos 5, cos Z (32) 
P,, = - sin 0 sin Z 

P 3 1  = cos po sin e 
P3,  = - sin lo sin e 
P 3 3  =, cos e 

Spherical equatorial coordinates will be transformed 
by the relations 

cos 6 sin (a - 2) = cos 6, sin (a, + to) 

cos 6 cos (a - Z) = cos 6 cos 6, cos (a, f to) - sin 8 sin 8, 

Sin 6 = sin 8 COS So COS (ao + [,) + cos e sin 6, 

(33) 
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Fig. 1. Precession geometry 

It is recommended that precession be applied in this 
manner. The usual formulae for applying precession 
directly to the ecliptic coordinates, as well as those 
popularly used for precessing equatorial coordinates (e.g., 
Ref. 16, page 38), are first-order approximations derived 
from the relations given above; use of such approxi- 
mations can lead to errors of: 

by the rotation 

r c  = [A (.)I rq 

where 

rl 0 0 1  

(34) 

- 
0 - sine COSE 

I AS I 5 0'.'4 tan 6, 

in the application of precession from the epoch 1950.0 
to coordinates of date in 1970. 

The corresponding transformation in spherical coor- 
dinates is 

cos S cos a cos p cos x 
Mean ecliptic rectangular coordinates of date rc may 

be obtained from mean equatorial coordinates of date 
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b. Numerical values of precession quantities. The 
standard expressions for the values of the precession 
parameters are those of Newcomb, referred to the epoch 
of 1900 Jan 0.5. In spacecraft trajectory work, however, 
as in most astronomical research, the standard epoch to 
which coordinates are referred is that of 1950.0. The 
expressions given below are evaluations of general rela- 
tions given by Lieske (Ref. 19). They correspond to New- 
comb's expressions referred to the epoch 1950.0, with T 
denoting the time elapsed from 1950.0 to date, expressed 
in tropical centuries as follows: 

&, = 2304'1952 T + 0'.'3022 T 2  + 0'.'0180 T 3  

2 = 2304.952 T + 1.0951 T 2  + 0.0183 T3 

e = 2004.257 T - 0.4268 T 2  - 0.0418 T 3  

A? = - 46.850 T - 0.0034 T 2  + 0.0018 T3 

= 23' 26' 44'184 AZ (36) 

2. Nutation. Nutation represents the difference be- 
tween the position of the true celestial pole (rotational 
axis of earth) and the mean celestial pole. It is entirely 
composed of the short-period effects due to the action 
of sun and moon on the figure of the earth, and thus 
affects only the equatorial plane, not the ecliptic. For 
this reason, it is most convenient to apply the nutation 
to ecliptic coordinates, in which the vernal equinox is 
shifted from its mean position in the mean ecliptic of 
date to its true position, which is in this same plane. That 
is, the true ecliptic of date is the mean ecliptic of date 
also. The true equator of date differs from the mean 
equator of date by two increments: 

a+ = nutation in longitude, which is the true longitude 
of date of the mean equinox of date 

Se = nutation in obliquity 

These two quantities, their rates, and their second and 
fourth modified differences, are tabulated at half-day 
steps in the JPL Ephemeris Tapes. The values given 
there are referred to the ecliptic of date and are com- 
puted from Woolard's expressions (Ref. 20). 

a. Application. A rigorous application of nutation may 
be obtained for ecliptic coordinates by 

where rte is the position vector referred to the true 
equinox and ecliptic of date, 
and 

cossq - sins+ 
[C(S+)] = sins+ cos6+ ~] (38) 

[ o  0 1 

True equatorial coordinates of date i t q  can be recovered 
by the transformation 

where A(€)  is the rotation matrix defined in Eq. (34) of 
Section (11-C-la) and 

(40) € = E +  s€ 

Thus, the entire transformation from mean equatorial 
coordinates of date to true equatorial coordinates of 
date is given by 

The use of first-order approximate formulae for the 
application of nutation neglects quantities of the order 
of one part in lo8 (0'.'002), so their use is inconsistent with 
double-precision computation. 

3. Uncertainty estimates. The general precession in 
longitude is an observationally determined quantity that 
is related rather directly to the precession elements dis- 
cussed above. Its conventional value is that of Newcomb 
for the epoch 1900 Jan 0 

p = 5025'.'64 

It is now known that this value is too low, but it is 
retained for reasons of continuity over extended time 
intervals. The apparent uncertainty is (Ref. 7) : 

This upper value of + 1!'3 corresponds to uncertainties 
in the precession elements of 

e([,) = 0'.'60 T 

e (2 )  = +0.60 T + 0.0004 T 2  (43) 
e(0) = +0.52 T 

where T is measured in tropical centuries from 1950.0. 
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Other factors contribute to uncertainties in these quan- 
tities, but are of much lower significance. 

The value of the mean obliquity at some specified 
epoch is also determined from observation. The conven- 
tional epoch for this determination is that of 1900 Jan 0; 
the uncertainty in that value (Ref. 7) is +0!’10. Duncombe 
(Ref. 21) indicates a correction of -0.29 T to the rate 
term of the obliquity. Combining these two, it is esti- 
mated the uncertainty in the value of the mean obliquity is 

e(Z) = -t 0’13 - 0’13 T (44) 

The nutations are computed from series expressions 
that are derived using Newcomb‘s theory of the earth 
and Brown’s Lunar Theory. One number is determined 
from observation, the “constant of nutation” N. It corre- 
sponds to the value at 1900 of the coefficient of cos a 
in the series for SE. The conventional value of N, along 
with its estimated uncertainty, is (Ref. 7): 

N = 9’.’210 t 0.01 (45) 

The values of all other coefficients, both in SE and S+, 
are specified by N and the theory. The Theory assumes 
a rigid earth, and it has been suggested (Ref. 22) that 
the coefficient of sin ~2 in the series for 8+ should also 
be determined through observation. No estimate can be 
made of the uncertainty involved in this theoretical 
defect. Recent corrections to the Lunar Theory will affect 
the’nutations only in the fourth decimal of a second of arc. 

In this discussion, only the spatial orientation of the 
spin axis of earth was of concern. The topics concerning 
the location of stations on the earth’s surface relative to 
the spin axis are discussed in Sections 11-D and 11-G. 

D. Polar Motion4 

The earth‘s axis of figure is not coincident with the 
axis of rotation; it moves with respect to the latter, 
causing the so-called polar motion. The precision with 
which JPL is seeking to evaluate DSN station locations 
requires consideration of this polar motion and its effects. 

1. Definition of terms and coordinate systems. 

a. Spin axis. This term refers to the axis of the earth‘s 
rotation. Free of gravitational and impulsive forces, the 

This section was written by Paul M. Muller, Systems Analysis 
Research Section, JPL. 

spin axis would remain fixed in inertial space. In reality, 
there are precession and nutation motions (see Sec- 
tion 11-C for a discussion of precession and nutation). 

b. Polar motion. The polar motion is a motion of the 
earth‘s principal moment of inertia axis with respect to 
its axis of rotation. This manifests itself as a change in 
the point where the spin axis pierces the earth‘s crust. 
It is best to think of the polar motion as a motion or dis- 
placement of the earth‘s crust with respect to the spin 
axis. The polar motion is not a movement of the spin axis 
with respect to inertial space. 

c. International Polar Motion Service. The International 
Polar Motion Service (IPMS) has the task of observing 
and documenting the polar motion. This international 
organization was initiated in September 1889 with the 
construction of five observatories, all of which were 
located at the same north latitude and spaced around 
the earth. The observatories are Iocated at Mizusawa, 
Japan (the current administrative center); at Ukiah, Calif.; 
at Gaithersburg, Md.; at Carloforte, Italy; and at Kitab, 
U.S.S.R. The IPMS issues yearly reports (Ref. 23) and 
monthly bulletins containing observations, results, and all 
other pertinent information and equations, and also 
assists scientists in obtaining their publications.5 

d. Polar coordinates. This is the standard system 
adopted by the IPMS for representing the polar motion. 
The system consists of a rectangular coordinate grid (X,Y) 
centered on the origin defined below. The X-Y plane is 
tangent to the earth at the north pole, with +X along 
the Greenwich meridian, and + Y  along the 90 west- 
longitude meridian. This coordinate system is used in 
Fig. 2. 

e. Mean pole 1903.0. The mean pole 1903.0G refers to 
a method of data reduction and the resulting origin for 
the polar coordinates. Reference 23 documents the equa- 
tions currently used by IPMS to reduce observations. 
Since other methods may be, and have been, used in this 
connection, results based on this system are denoted 
“new system.” The origin of polar coordinates is uniquely 
defined by the new system program. 

’Up-to-date data can be obtained by writing to Dr. Shigeru Yumi, 
Director, IPMS Observatory, Mizusawa, Iwate-Ken, Japan. 

‘Recently named mean pole 1903.0 at  the Stresa Symposium, March 
1967, but previously known as New System 1900 (Le., X m e a n p o l e l w 3  0 

- X O P I S y S t e n , p o l c 1 0 o o  = 0, Y m , . . n p o i e m w  n - Y n e , %  c y s t e m p o l e m w  = 0). 
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Fig. 2. Polar orbit plot of X vs Y for the period 1962-1968 
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f .  Old system 1900. This system was the program 
standard of IPMS prior to replacement by the new system 
in 1955. The origins and results of the two are distinct, 
and there is no simple relationship between them. TO 
obtain results in a given system, the observations must 
be processed according to the methods that define it. 

g. Local oertical. As defined by astronomers, the local 
vertical is a line perpendicular to the plane determined 
by local gravity. Because of gravitational anomalies, the 
local vertical line does not, in general, pass through the 
spin axis. 

h. Astronomical latitude. This is the complement of the 
angle between the local vertical and a line through 
the observatory parallel to the spin axis. This quantity is 
definitely a function both of the observer’s location and 
of the polar motion. As will be shown, variations in this 
observed quantity can be related to polar motion. 

i. Continental drift and crustal slippage. These motions 
have effects on station locations. The continental drift is 
a matter of controversy; however, most observers believe 
that it is small, bounded by approximately 0.1 m/year. 
Crustal slippage due to earthquakes and faults has been 
observed; it amounts to 2 m/50 years (Ref. 24, page 327, 
and bibliography from same). These small motions will 
be neglected in the current discussion. 

i. Earth-fixed system coordinates. A system of crust- 
fixed coordinates has been adopted as a reference for this 
report. Let the pole be at the origin for the mean pole 
1903.0. The equator follows from the pole. Choice of 
the Greenwich meridian is arbitrary, but, once chosen, 
remains fixed and determines earth-fixed system (EFS) 
station longitudes and the polar coordinates. This is a 
system of invariant coordinates for any station anchored 
to the crust, neglecting crustal slippage. In any com- 
parison of station-location solutions, such as are obtained 
from orbit determination, time-invariant station coordi- 
nates should be used. 

k. Instantaneous coordinates. Let the pole be at the 
location (X,Y) given by the IPMS as the current location. 
The equator is defined from the pole. Consider a small 
rotation from EFS to the instantaneous (INS) coordinate 
system. Rotate through Y first, followed by X ,  which is 
an arbitrary choice in small transformations. The INS 
Greenwich meridian resulting from the change of co- 
ordinates still passes through the intersection of the EFS 
equator and EFS Greenwich meridian. Therefore, the 
INS Greenwich meridians all pass through this EFS 

intersection point. Other definitions of the INS Greenwich 
meridian would be possible; however, they could not be 
consistent with Eqs. (46) through (48). 

1. Longitude, latitude, and rs. Longitude is measured 
eastward, from 0 to 360 deg; latitude is measured positive 
north and negative south of the equator; and rs  is the 
distance from the spin axis, and is the length of the 
perpendicular through the station. These may be given 
in either the EFS or INS system, as required below. 

2. Observation and determination of polar motion. 
The early background of the IPMS effort and the theory 
behind it are discussed in Refs. 25 and 26. Polar motion 
is observed indirectly through determination of the varia- 
tions in latitude of the five IPMS observatories. If the 
nominal station location of any observatory or DSN 
station in EFS coordinates is taken, and then its location 
in the INS system is observed, there will be a difference. 
This is clearly a coordinate difference, for the station 
has not moved with respect to the earth. Equations (46) 
through (48) give INS-EFS coordinate differences for 
latitude, longitude, and r,: 

Ah = AINs - hEFs = tan 4 (x sin X + 2’ cos A) (46) 

where 

X ,  Y = polar coordinates 

4, h = station latitude and longitude, respectively, 
correct to three significant figures (commensurate with 
X and Y). 

It should be noted that Ah is zero for stations on the 
equator. This is a consequence of the definition for the 
INS Greenwich meridian, which requires that it always 
pass through a fixed.point on the equator. Other require- 
ments could be made; however, first-order changes in the 
equations would result. 

Equation (47) is the fundamental equation used by 
the IPMS for variation in latitude. The same set of 72 star 
pairs are observed with vertical zenith telescopes at each 
observatory. Equation (49) is filled out for an observation 
from each station, creating five simultaneous equations 
for each star-pair observed as follows: 

- 
+)observed +nominal  = X COS h - Y sin X + 2 (49) 
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The variable Z is the change introduced by any star 
catalog (or proper-motion) errors in the adopted declina- 
tions. With at least three stations observing the same pair, 
values for X ,  Y, and Z, may be obtained independently. 
If the catalog declination errors could not be removed 
in this fashion, they would swamp-out the very small 
latitude variations caused by polar motion. 

The use of five stations allows for bad weather, and 
allows possible data-consistency checks. Such checks 
(Ref. 23) have revealed good agreement. The IPMS values 
of X and Y are correct to the order of 0.5 m. The method of 
observing each star pair, including reversal of the instru- 
ment between observations, eliminates or reduces such 
instrumental errors as flexure, axis orientation, etc. 

3. Observed nature of the polar motion. Figure 2 is a 
plot of IPMS data, X versus Y, for the period up to 1968. 
These so-called polar orbit plots demonstrate the ellip- 
tical nature of the motion, and show the period of 
approximately 405 days. This motion has been repre- 
sented as the sum of two basic terms, called the annual 
and Chandler motion (see for example Ref. 27, Fig. 7.4). 
Their periods differ, and they repeat phase relationships 
approximately every 6.5 years. This beat phenomenon 
results in a phase-cancelling in 1961 and in 1967, as 
manifested by a very small amplitude of motion in the 
six-month semi-period. The variation in amplitude over 
one-half revolution ranges from 1 to more than 20 m 
(compare 1964 with 1967 in Fig. 2, for example). It 
should be noted that the ellipses are not centered at the 
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Fig. 3. Polar motion plot of X and Y vs Besselian years 1960-1968 
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origin. In 1900, they were very nearly so aligned. The 
change illustrates the secular motion of the pole (Ref. 24) 
which has covered 10 m in 67 years. Figures 3a and 3b 
give plots of X and Y alone, versus time since 1960. 

4. Predictions of the future motion. Hattori (Ref. 28) 
discussed possible modeling of the polar motion. Hattori 
was successful in empirically fitting trigonometric equa- 
tions, with approximately 28 terms, to the polar motion 
over one 6.5-year period (minimum-to-minimum ampli- 
tude). The fit was good to within 3 m over the entire 
interval. He found that the phase and amplitude charac- 
teristics of the Chandler term undergo unpredictable 
changes at each minimum. At this time, there is no 
reliable prediction service from IPMS or other sources. 

E. Time 

Time is not physically tangible; it has no unique 
physical property that permits its laboratory examination. 
Time is essentially metaphysical; there is no direct way 
of measuring it, even in principle. Nonetheless, our lives 
are ordered by it and, more importantly, our physics is 
also ordered by it. Therefore, time must be measured. 
The foundations of physical science include the article 
of faith that a “uniform” time exists that corresponds 
identically with the variable called time in dynamics. 
Even Isaac Newton suspected (Ref. 29, page 8) the 
impossibility of determining “uniform” time, and he com- 
mented upon the necessity of distinguishing between this 
construct of faith and the physical measures of time. 
The failure to reconcile observations with dynamical 
theories may lead one to amend or discard the laws of 
dynamics or the means of determination of time, but the 
faith in a “uniform” supertime is untouched, 

Any physical measure of time is entirely conventional, 
established by definition. Most of the physical measures 
of time represent attempts to approximate “uniform” 
time more closely than did their predecessors (Le., their 
introduction was intended to reduce the discordances 
between observations and dynamical theory); however, 
each is nonuniform in some degree. Each of them has 
some area of continuing utility. These points may serve 
as a baseline for the following discussions. 

1.  Sidereal time. Sidereal time is governed by the 
rotation of the earth relative to the stars, being defined 
as the hour angle of the vernal equinox (the ascending 
node of the sun’s geocentric orbit). Thus, an object 
transits the meridian at a sidereal time equal to its right 
ascension. Sidereal time referred to the true equinox of 

date is called apparent sidereal time, while mean sidereal 
time is referred to the mean equinox of date. Local 
sidereal time is determined directly from observations in 
accordance with its definition. Greenwich sidereal time 
is obtained by adding the west longitude of the local 
meridian to the local sidereal time. 

Because it is referred to the equinox of date, the 
duration of the sidereal day is not identical with the 
period of rotation of earth relative to a fixed direction, 
but is approximately 0 SO084 shorter. 

2. Mean solar time. Solar time is governed by the 
rotation of earth relative to the earth-sun direction. 
Apparent solar time (referred to the true sun) is not used 
today, because of its variability of approximately 2 1%. 
Instead, mean solar time is defined as 12 h plus the 
hour angle of the mean equinox of date, minus the right 
ascension of the “fictitious mean sun.” This latter is an 
imaginary point defined by Newcomb to have a uniform 
sidereal motion on the mean equator of date, if time is 
counted in ephemeris time. The rate of this fictitious 
motion is chosen so as to keep it as close as possible to 
the mean longitude of the true sun. It was originally 
intended that this definition be identical with 1% h PIUS 
the hour angle of the fictitious mean sun; however, the 
variable rotation of earth and the method of tabulation 
prevent this correspondence from being exactly satisfied. 

The definition of mean solar time does not admit of 
practical determination in a wholly consistent way for two 
reasons: (1) the fictitious mean sun cannot be observed, 
and (2) the definition requires a simultaneous knowledge 
of ephemeris time (q.v.). In Ref. 16, the section on the 
calculation of mean solar time does not, in fact, give 
principles for the practical determination of this quantity, 
but rather for Universal Time. 

3. Universal Time. Universal Time (UT) is almost 
identical with mean solar time on the Greenwich me- 
ridian. , The definition differs from that for Greenwich 
mean solar time in only one small, but very significant, 
detail. UT is defined as 12 h plus the Greenwich hour 
angle of a point moving on the mean equator of date. 
The expression for the right ascension of this fiducial 
point is identical with that for the fictitious mean sun, 
but with time counted in UT. In actual practice, no 
distinction is made between a unit of UT and a unit of 
mean solar time. Indeed, UT minus the local longitude 
is called local mean solar time, ignoring the near-zero 
difference in the definitions. 
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The definition of UT cannot be used as a basis for its 
direct determination, for the fiducial point cannot be 
observed. However, the definition requires a well-defined 
and nearly linear relationship with mean sidereal time 
(Ref. 16). Thus, UT is determined from measures of local 
mean sidereal time. Such measures are contaminated by 
variations in the position of the pole of rotation and by 
variations in the rate of rotation, so that several different 
levels of UT are defined, corresponding to different levels 
of approximation to “uniform” time. 

The time corresponding to observed local sidereal time, 
converted to local mean solar time, and augmented by 
the station west longitude is designated UTO. Because of 
pole wandering, which causes variations in the meridian, 
UT0 refers only to the location of the observing station. 

Analysis of time determinations and stellar observations 
from several observatories permits the determination of 
the true instantaneous geographic location of the pole 
(see Section 11-D). UT0 corrected for the polar motion 
is designated UT1, which is observatory-independent. 
The pole can presently be located to an accuracy of 
0’1015 (Ref. 30). 

UT1 is still affected by the variability in the rate of 
rotation of earth. This variability includes a component, 
the seasonal inequality, that seems stable enough to be 
predictable (Ref. 31). When this effect is removed from 
UT1, the resultant time measure is designated UT2. 
It is the closest approximate to “uniform” time based 
primarily on the rotation of earth. 

A hybrid, designated UTC, will be discussed under 
broadcast time. 

4.  Ephemeris time. Verification of the nonuniformity 
of earth‘s rotation rate implied the unsuitability of earth 
for time keeping. Ephemeris time was devised as a means 
of more closely approaching a “uniform” measure of 
time. If it is recalled that uniformity means consistency 
with the laws of dynamics, then a uniform measure of 
time could be defined by means of the dynamical system. 
The following is excerpted from Ref. 16 (page 69): 

“Ephemeris time is a uniform measure of time 
depending on the laws of dynamics. It is the inde- 
pendent variable in the gravitational theories of the 
sun, moon, and planets, and the argument for the 
fundamental ephemerides in the Ephemeris.” 

It is imperative to observe the logical flaw in this 
citation, for it is fundamental to a great deal of confusion 
over Ephemeris Time (ET). It is implied here that the 

laws of dynamics, the gravitational theories of 
system objects, and the tabulated ephemerides 

all solar 
of these - 

objects are all consistent with one another. This impli- 
cation is patently false. Taking the sun as an example, 
neither Newcomb‘s Theory of the Sun nor his Tables of 
the Sun are completely consistent with either gravita- 
tional theory or the observed motion of the sun, nor are 
they totally consistent with one another. 

The formal definition of ET consists of a defined rate 
and epoch. Both were chosen so as to force ET to be 
the independent variable in the Theory of the Sun; the 
ephemeris second is the tropical second at 1900 January 
0.5 ET, which epoch corresponded by definition to a geo- 
metric mean longitude of the sun equal to 279” 41’48’.’04. 

It has been noted that the epoch definition depends 
on the System of Astronomical Constants, since the geo- 
metric position of the sun cannot be observed. If the 
definition is strictly adhered to, then the value of aber- 
ration adopted in 1964 requires a change to the values 
of ET and corresponding changes to the lunar and 
planetary theories (Ref. 30). It is suspected that, when 
action is taken, it will be a redefinition of epoch instead 

There is nothing wrong in principle with defining ET 
in this way, unless it is assumed that ET, thus defined, 
is “uniform.” In a practical sense, however, the formal 
definition is an irrelevancy that is inconsistent with the 
determination of ET. 

The determination of ET consistent with its defi- 
nition would require that observations of the sun be 
compared with the Theory of the Sun under the constraint 
that admits of no error in the theoretical mean longitude. 
This is not done in practice because of the difficulty of 
interpreting solar observations and because of the rela- 
tive slowness of the solar motion in right ascension. 
What in fact occurs is that observations of the moon are 
compared with the Lunar Theory under the constraint 
that no error exists in the theoretical mean longitude of 
that object. These two procedures would be equivalent 
only if the independent variables in the two theories 
bore the same relationship to “uniform” time. They 
would themselves be uniform if the two theories included 
no deviations from dynamical theory. 

The de facto definitions of both rate and epoch are 
specified by the lunar theory against which the obser- 
vations are compared. This is implicitly acknowledged 
in the 1970 Ephemeris (Ref. 32), where, in accordance 
with an IAU resolution of 1967, the designation ET0 is 
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attached to ET referred to the Improved Brown Lunar 
Theory and ET1 is attached to ET referred to the revision 
of that theory incorporating the 1964 System of Astro- 
nomical Constants. Another designation will become 
necessary when the Eckert-Jones theory or the Eckert- 
corrected Brown theory come into general use. Even 
with these modifications, however, the Lunar Theory is 
not adequately consistent with gravitational theory (Refs. 
33 and 34), nor is the real lunar motion adequately 
represented, even by dynamical theory, for any of these 
measures to be called ‘‘uniform.”7 

5. Atomic clock time. All of the previous subsections 
have dealt with time measures derived from the motion 
of material objects. In principle, any repetitive process 
of adequately high reliability could be used to define the 
unit of time. Such a process is the atomic resonance 
corresponding to transition between the two hyperfine 
levels of the ground state of cesium 133. The frequency 
of this resonance is 9 192 631 770 Hz (per second of ET 
as determined by Markowitz, Hall, Essen, and Perry, 
Plzys. Rev. Lett., Vol. I, No. 105, 1958), with a stability 
of 3 X (Ref. 30) under laboratory conditions.8 In 
October, 1967, the General Conference of Weights and 
Measures adopted this as the definition of the second in 
the International System of Units (SI), replacing the 
ephemeris second, which remains in the IAU System of 
Astronomical Constants. 

Although the rate can be defined in this way, the 
atomic resonance cannot be used to define epoch, which 
requires a unique event. The epoch for atomic clock time 
(A.l) is supplied by definition as follows: At the epoch 
1958 January 1, at OhOmOS UT2, A.1 was precisely @Ornos. 
With rate and epoch thus defined, A.l  is the standard of 
atomic time used in the U.S. and some other countries. 
I t  is not identical with the atomic time scale adopted by 
the Bureau International de l’Heure nor with the National 
Bureau of Standards. 

While A.1 is certainly a closer approximation to 
“uniform” time than ET1, there are no grounds for calling 
it uniform. It is known that the transition frequency 
should be subject to variations due to relativistic effects 
and to variations in the local magnetic field. Such effects 
are thought to have been observed; however, the varia- 
tions are so close to the present threshold of uncertainty 
that the determinations are not definite. 

‘The quantity inaccurately called ET in the JPL spacecraft tracking 
and data reduction programs is not, in fact, any of the above meas- 
ures. It is A . l  plus a constant 3 2 2 5  (Section 11-E-5). 

*Stability, in this context, means intercomparability between two 
oscillators operating under identical conditions. 

6. Coordinate time. In a general relativistic frame- 
work, atomic time kept by an observer is interpreted as 
the observer’s proper time. In such a framework, it is 
necessary to include a transformation from proper time 
to coordinate time, the latter being the independent 
variable in the differential equations describing the geo- 
desic motion of matter and light. Coordinate time is 
identified with the ideal of uniform time on which the 
definition of ephemeris time is based (Ref. 35). Loosely 
speaking, coordinate time is iriterpreted as mean atomic 
time. The transformation from proper time to coordinate 
time depends on the position and inertial velocity of the 
observer within the solar system and provides for the 
instantaneous deviation of proper time from coordinate 
time. Only the effect of variations in the observer’s 
potential and inertial velocity on the proper/coordinate 
time relationship are of interest since any constant effects 
are absorbed in the definition of the ephemeris second. 

The transformation provided below (Eq. 50) is accu- 
rate to approximately one part in 1011 and accounts for 
variations in the orbital motion of the earth and in the 
vector addition of the heliocentric velocity of the earth 
and the diurnal motion of the observer. If further pre- 
cision is required, other observer motions must be con- 
sidered and it is not advisable to use the transformation 
provided. If T is the atomic time and t the coordinate 
time, the differential relationship is given by (Ref. 36): 

dT a 
dt r - = 1 - 3.302 X lo-”- COS Ea 

- 1.476 X COS + COS (UT + h) 

+ 0.064 X 10-lo cos + cos (2aa + UT -I- h) 
+ ... 

> (50) 
where 

Eo = the eccentric anomaly of the sun 
a = semi-major axis of the earth‘s orbit 
r = distance of the sun 

UT = universal time in angular measure 
4 = geocentric latitude of the observer 
h = the longitude of the observer measured east- 

ward from Greenwich. (More precisely, + and 
are the latitude and longitude of the atomic 

clock) 
a0 = right ascension of the fictitious mean sun 

In converting intervals of coordinate time to observed 
intervals of atomic time, these terms are significant 
for the accurate computation of spacecraft range data. 
At one astronomical unit, these terms in round-trip 
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range produce an effect of approximately 100 m. The 
integral of this differential expression is needed for time 
keeping and is given by 

t = T + 32"s + 1.658 X [sin Ea + 0.03681 

cos 4 [sin (UT + h) - sin A] + 2.03 X 

+ ... (51) 

Here, January 1, 1958, UT = 0 was chosen to be the 
epoch at which to - T~ = 32"15, sin E ,  = -0.0368. Be- 
cause of its high frequency nature, the diurnal term is 
three orders of magnitude smaller than the orbital term 
in its integrated effect. Other neglected observer motions 
have integrated effects at the microsecond level. 

7. Broadcast time. For purposes of practical use by a 
large variety of users, the various Standard Frequency 
services disseminate time by radio broadcast. Some users, 
such as navigators, require that the measure of time 
available to them approximate UT2 to within approxi- 
mately 0.1 sec. This led, in 1964, to the introduction of 
Coordinated Time (UTC) for radio dissemination. The 
UTC is a hybrid time. The rate is defined relative to 
atomic clock rate, while the epoch is defined relztive to 
UT2. When, at any time, UTC deviates too far from 
UT2, either the frequency or the epoch can be offsct 
(adjusted) by international agreement. By convention, 
frequency offsets are introduced only at the beginning 
of a year (the most recent was in 1966), while epoch 
offsets can be introduced at the beginning of any month. 
The present frequency differs from A.l by -3 X i.e., 
the ratio of an A.l sec divided by a UTC second is 
1 - 3 x 10-8. 

8. Julian dates. The system of Julian day numbers is, 
in practical effect, a continuous sequential numbering of 
days from an epoch so remote that all astronomical events 
of historical record will be assigned positive Julian dates. 
The epoch of the Julian cycle is 4713 BC, January 1, 
Greenwich mean noon, on the Julian ~a lendar ,~  at which 
time the Julian date was exactly zero. 

Two systems of Julian day numbers are in common 
use: (1) the Julian date (JD), which is measured in days 
of UT, and (2) the Julian Ephemeris date (JED), mea- 
sured in days of ET. In either case, the Julian date 
corresponding to a particular instant of time is specified 
as the Julian day number followed by the decimal frac- 
tion of a day elapsed since 12h (UT or ET, whichever is 

'Julian cycle and Jdian date do not refer to Julius Caesar, as in the 
case of the Julian calendar, but instead honor the father of Josephus 
Scaliger, author of the system. 

appropriate). A table of 
Ref. 16, pages 437439. 

Julian day numbers is given in 

At various times in recent years, a proposal has been 
advanced to adopt a modsed JD. Usually this has 
been defined as JD-2400000.5 and defended on the 
grounds of economy of publication, simplification of com- 
puter operations, or reduction of transcription labor. The 
proposal has consistently encountered strong opposition 
and has never received official sanction. The reason for 
this is fundamental. The system of Julian dates is the one 
and only system that is universal and unambiguous in 
both space and time. No other calendric system has ever 
been standardized worldwide (Greece still does not 
have a strictly Gregorian calendar). No other major 
calendric system has gone unmodified (the Gregorian 
calendar was shifted by 0.5 days in 1925 in every ob- 
servatory except Heidelberg, where the shift was effected 
in 1933). Codification of a modified Julian system would 
destroy these advantages and create ambiguity where 
none existed before. 

This is not to say that leading digits must always be 
carried in any use of the Julian date. Indeed, many 
analysts actually work with some modification of JD 
during their computations. There can be no objection to 
this practice, as long as the present system of Julian day 
numbers remains the primary reference and the compu- 
tational devices are related unambiguously to it. 

9. Year. The year is defined as the period of revolu- 
tion of earth in its motion about the sun. Several different 
years may be defined in conformance with this general 
statement, depending on the nature of the reference 
direction with respect to which the motion is measured. 
Thus, the sidereal year is the period of revolution with 
respect to the fixed stars, the anomalistic year is the 
period from one perihelion passage to the next, the eclipse 
year is the interval between successive passages through 
the moon's apsidal line, and the Gaussian year is the 
period associated with Kepler's third law with a = 1. In 
the present context, only four years are of any con- 
sequence: Julian, tropical, Besselian, and calendar. 

The Julian year (or the Julian century) is used in many 
of the time-variant relationships of astronomy, both in 
this document and elsewhere. It was the average of the 
calendar years in the Julian calendar and has the ad- 
vantage of an exact decimal fraction representation as 
follows: 

Julian year = 365.25 days 

Julian century = 36525 days 
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The Julian year is an interval only and is not associated 
with an epoch. 

By tradition, it is desirable to have a definition for a 
year in which the seasons remain fixed, i.e., a year based 
on the passage of the earth through the equinoxes. The 
interval of time elapsed between two successive passages 
of the vernal equinox is called the tropical year and is as 
follows : 

Tropical year = 365.2421988 days 

Tropical century = 36524.21988 days 

It is this interval that calendric systems intend to ap- 
proximate on the average, so that the seasons do not 
precess through the calendar. For example, the Gregorian 
calendar year (present system), averaged over the 400- 
year cycle, yields 365.2425 days, The tropical year is used 
only as an interval measure and no epoch is usually 
associated with it. The epoch for the calendar is specified 
by the calendric algorithm. 

The Besselian year is frequently used for specifying 
standard and secondary epochs, as well as for some time- 
variant relations, such as those of Section 11-C. The epoch 
of the Besselian year is the instant of time at which the 
right ascension of the fictitious mean sun, affected by 
aberration and referred to the mean equinox of date, is 
precisely 1tIh4Om. This instant, designated by the notation 
.O after the year (e.g., 1950.0), always falls near the be- 
ginning of the Gregorian calendar year. The length of 
the Besselian year is almost identical with the tropical 
year as follows and the difference is usually neglected: 

Besselian year = tropical year - 0: 148 T 

where T is measured in tropical centuries from 
1900.0; 1900.0 is the basic epoch, which corresponded to 
JED 241 5020.31352 = 1900 January 0.81352 ET. The 
error committed in computing the beginning of a Bes- 
selian year by addition of the appropriate number of 
tropical centuries to the Julian date given above is: 

+ 0.856 X T 2  (days) 

This amounts to approximately 1785 for 1950.0. If ex- 
tremely high precision is required, one may either com- 
pute 

JED( 1900.0 + T )  = JED( 1900.0) + (365.2421988 

- 0.856 X ~O-*T)T (52) 

where T is an integer number of years, or one may invert 
the definition of the right ascension of the fictitious mean 

sun (Ref. 16, page 73). Rarely will either procedure be 
justified by necessity. 

Every usage of decimals with years implies that Bes- 
selian years are intended. The indicated time point should 
not be confused with January 0.0, January 0.5 or Janu- 
ary 1.0, for the error involved can be significant for high- 
precision work. 

F. Timing Polynomials 

There are several different times available. These 
times are referenced to each other by definite offsets and 
with varying degrees of accuracy. The primary times 
used in trajectory and orbit determination work are ET, 
UT1 and UTC, and A.l (see Section 11-E and also Ref. 37). 
The relationship between the various times has been 
tabulated by the U.S. Naval Observatory. JPL has fit 
these tabulated data with polynomials over discrete timc 
periods and interpolates over them. This technique is 
described in Ref. 38, and the polynomial coefficients from 
January 1, 1961, to November of 1968 are shown in 
Table 3. It has been assumed that ET-A.l is a constant 
and has the value 32.25'O sec. Since the epoch for A.l is 
January 1958, this is the value of ET-UT1 for 1958 
(A.l-UT1 approximately = 0 on this date). Subsequent 
values of ET-UT1 are assumed to be 32.25'" + (A.1- 
UT1) for any date of interest. The U.S. Naval Observatory 
Atomic Time, A.l, is known with respect to UTC as dis- 
seminated by that agency to within microseconds. Atomic 
time and UTC, as determined by other agencies such as 
National Bureau of Standards, will, in general, differ 
from the above. This arises because the atomic scales 
themselves differ, and because the various transmitting 
and receiving stations inevitably maintain different time. 

For these reasons, A.l and UTC ( U S  Naval Observa- 
tory) have been arbitrarily picked as reference times. 
Where necessary, the proper corrections are applied as 
when, for example, published data from National Bureau 
of Standards are used. 

The timing polynomial listings are good to 1 msec. 
The Double Precision Orbit Determination Program 
(DPODP) version (Ref. 39) is being computed within 100 
psec, more than adequate in view of uncertainty in ET or 
UT1. The value of A.l-UT1 is known to t0.005 sec after 
the fact, and to tO.0002 sec/day' additional when 
predicting ahead. 

''The value 32.25 was and is used in JPL's Single Precision Orbit 
Determination Program ( SPODP) ; the improved estimate, 32.15, 
is used in JPL's Double Precision Program for the value ATtowo. 
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G. Station locations 

Listed in Table 4 are the DSS geocentric positions 
with their associated uncertainties. Listed in Table 5 
are some of the AFETR stations. Most of the DSS loca- 
tions, as noted in the references, were estimated from 
the various space probes (Refs. 40, 41, and 42). Since 
deep space tracking data are insensitive to the station 
coordinate along the earth‘s axis of rotation, these esti- 
mates reflect determinations of distance off the spin axis 
( R  cos +) and longitude as indicated by the statistics 
(i.e., the radius or latitude of the initial land survey being 
held constant in a particular determination). 

Table 5. AFETR station locations 

Stations 
Geocentric 

latitude, km 

17.036 
- 7.92 1 
32.174 
28.321 
27.733 

-24.751 
26.482 
21.332 

-25.792 

Radius, km 

6376.3 
6377.9 
6372.1 
6373.3 
6373.7 
6374.5 
6373.9 
6375.3 
6375.7 

Longitude, kn 

298.207 
345.598 
295.364 
279.423 
344.405 
1 13.71 6 
281.732 
288.868 
28.358 

Antigua (91.1 8) 
Ascension (1 2.1 8) 
Bermuda [MSFN) 

Cape Kennedy (1.1 6) 
Canary Islands 

Carnarvon 

Grand Bahama 

Grand Turk 

Pretoria The effect of the wandering of the earth‘s pole of rota- 
tion on station locations ranges between 5 and 20 m over 
a 14-month period (Ref. 23). The uncertainty in the 
pole’s position is approximately 1 m after the fact and 
approximately 3 m for a 6-month prediction. All station 
location estimates have been referenced to the mean 
pole 1903.0.11 

The correction from geocentric to geodetic longitude is 
assumed to be zero. 

H. Atmospheric Model 

The model is an empirical expression for the correc- 
tions to the tracking station observables. It was formu- 
lated by D. Cain of JPL who fit to real atmospheric mea- 
surements from the AFETR. Recent comparisons with 
ray tracing techniques described in Refs. 44 and 45 
provide excellent agreement, provided the proper refrac- 
tivity index is used. The corrections to range and doppler 
observables are given by: 

(54) 
N A,p = [0.0018958/(siny 4- 0.06483)1.4] 340.0 

The conversion to geodetic latitude for proper station 

+Geodetic = +’ + e2 cos +‘sin (p’ [ l  + e2 cos +’I (53) 

elevation angle calculations is: 

where 

e2 = 2f - f” 
f = V298.25, nominal flattening (see Section 11-B) 

+’ = geocentric latitude in radians 

T 

1 - A,b = 0.0018958 [ 1 
(sin A + 0.06483)1.4 (sin B + 0.06483)1.4 (55) 

y = elevation angle in rad where 

p = the topocentric range in km 

p = the topocentric range rate in km/sec 

T = doppler count interval, sec 

N = refractivity X lo6 (nominally 340.0 at sea level) 

A,y = 57.2957795 - bib, y < 0.3 rad 340.0 

nrY = 57.2957795 N X - ‘Os 
sin y 

y 2 0.3 rad 

6 < 87 deg A, y cos + sinz a 
cosz y sin u A,a = 

6 < 87 deg (sin(pcosy - sinycos+cos~)A,y 
cos 6 

A,6 = 

“Also referred to as “New System 1900 Pole” with AX = AY = 0 
(see Section 11-D on Polar Motion). 
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where 

b, 1 1.0 - (1.216 X lo5 b3 yrad) 

- (51.0 - 300.0yrad) (b3)" 

b, = [7.0 X 10-4/(0.0589 + yrad)] 

1 
103 (T - RJ b3 = 

a = right ascension 

6 = declination 

+ = latitude 

u = azimuth 

r = geocentric radius of probe 

1.26 x 10-3 

The optical hour angle and declination corrections are 
determined as above; however, h,y is calculated differ- 
ently: 

A,y = tan-' - 
( p  b"bJ 

where 

0.00211 
(yrad + 0.0598)"4' b, = 

b, = db," - R,2 + R; sinz y - Re sin y 

b, = Re + 51.2064 

where 

Re = equatorial radius of the earth 

1. Ionospheric Model 

The model is an empirical expression for the correc- 
tions to the tracking station observables. It was developed 
by D. Cain and A. Liu of JPL (Ref. 46 using material 
from Ref. 47). It should be noted that the dependence on 
transmitter frequency is the inverse square and that the 
time of day and elevation angle are direct factors. 

The correction in range is given by the expression 

(57) 

where 

B = scale height, km 

fq = transmitter frequency, Hz 

NMAs = maximum electron density, 
number of electrons/cc 

A,p(y) = unmodified range correction, m 

C D  = correction factor for diurnal effect 

CL = correction factor for geomagnetic latitude 

C, = correction factor for sunspot activity 

C ,  = correction factor for scaIe height variations 

The unmodified range correction, which depends only 
upon the elevation angle y, is obtained by interpolating 
between the following values: 

0 
10 
20 
30 
40 
50 
60 
70 
80 
90 

23.434900 
19.607710 
14.462294 
11.128928 
9.0899870 
7.8161703 
7.0007498 
6.4233956 
6.0079401 
6.0079401 

~ ~ 

An appropriate interpolation method should be utilized. 

To caIculate the four correction factors, it is first neces- 
sary to find the latitude and longitude (+' and A', re- 
spectively) of the sub-400 km point of the signal path. Let 
R, 9, and A be the coordinates of the tracking station. 
Let h be an input (nominal value is 400 km) and calculate 

R B = -  
R + h 

Then, 

sin +' = sin + cos I,/I + cos 3 sin I,/I cos u 

- d 2  5 +' 5 ?r/2 (60) 

COS +' = + (1 - sin2 +')" (61) 
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where 

= the azimuth angle of the spacecraft at 
the tracking station 

singlrsino 
cos +' sin AX = 

cos AX = + (1 - sin2 (63) 

sin AX AX = tan-, - cos AX 

A' = X + A h  (express in deg) (65) 

The correction factors are obtained as follows: 

CD = 6 +   COS H (66) 

(67) 12 H =  

where 

T = current time (UT1) minus time of previous 
midnight, in hours 

c, = 3 (; - --) I +M I 

The geomagnetic latitude, +M, is computed from: 

sin +M = COS + COS (p0 COS (A' - A,) + sin +' sin +, 
7r 7r -21+6112 

where 

ho = longitude of geomagnetic pole = 291 deg 

+o = latitude of geomagnetic pole = 79 deg 

Cs = 1 + 0.004R I cos H 1 
where 

R = sunspot index, an integer 

where 

A, ( y )  = 1.51266 - 0.203976 + 0.0204662 

A, ( y )  = - 0.63775 -t 0.261158 + 0.02672~ 

A, ( y )  = 0.12469 - 0.05718e + 0.0062662 

e = y/lO, deg 

h, = height of maximum electron density, km 

(69) 

(70) 

The correction in counted doppler is derived by dif- 
ferencing the hip expression before and after the count 
time, changing the sign to account for the plasma effects 
on phase velocity, and dividing by the count time. 

111. Moon 

A. Gravity Potential 

The lunar gravity potential is described by the func- 
tion, @, expressed as a series of spherical harmonics: 

(71) X (Cnm cos m i  + S,, sin m i )  

where 

= gravity potential 

GMa = lunar gravity constant 

r = radial distance to moon's center of mass 

+ = latitude referred to moon's true equator 

A = longitude referred to moon's true equator 
and meridian with zero mean deviation 
from earth-moon line 

R = mean radius of moon (nominal value: 
1738.09 km) 

P c  ( z )  = associated Legendre polynomiaP2~ l3 of 
degree n and order m 

The coefficients C,, and S,,, referred to as the moon's 
gravity harmonics, describe the deviation from sphericity. 
Prior to the launching of the lunar orbiters, lunar libra- 
tion data provided information on the values of C,, and 
C,, (Ref. 49), i.e., the triaxial moon model. Otherwise, 
none of these gravity harmonics was known. The lunar 
orbiter tracking data are presently being analyzed by 
two NASA groups: one at JPL and one at Langley Re- 
search Center (LaRC). Since neither group has yet ar- 
rived at a final best estimate for the values of the gravity 
harmonics, a definitive set cannot be included herein. 

"AS defined in Whittaker and Watson, Modern Analysis, Fourth Edi- 
tion, page 323, paragraph 15.5. 

some European books, there is a difference in the definition; e.g., 
Ref. 48, Russian coefficients have a sign reversal on GI, S?,, C,, 
SZ1, CZ3, and SZ3.  
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However, the current interim results from both JPL and 
LaRC are presented as being the best information avail- 
able to date. It should be noted that the LaRC model 
includes degree 5 harmonics, whereas the JPL model 
includes tesserals only through degree 4, but the zonals 
through degree 8. 

n m  

2 0  
1 
2 

3 0  
1 
2 
3 

4 0  
1 
2 
3 
4 

5 0  

6 0  

7 0  

8 0  

Tables 6 (Ref. 50) and Table 7 (Ref. 51) provide the 
current JPL and LaRC preliminary determinations of the 
gravity harmonics. In view of their inconsistent nature, 
JPL recommends no adopted set at this time. Current 
JPL computer programs use the triaxial model of the 
moon with coefficients (Ref. 1) given by: 

J Z 0  = 2.0711 X e0.05 X (72) 

C,, = 0.20716 X +0.05 X (73) 

s,, = c,, = s,, = 0 (74) 

Table 6. Lunar gravity harmonics derived from Lunar 
Orbiters I through V (preliminary JPL estimatela? 

c,,, x 104 

- 1.9076 
0.0248 
0.0895 

-0.2058 
0.3397 

0.04 1 4 

0.1319 

0.0421 
0.0231 

-0.0038 

-0.1 104 

-0.0059 

0.0209 

-0.1 364 

0.4030 

-0.2057 

u x  104 

0.0171 
0.0501 
0.0406 

0.0339 
0.0049 
0.0052 
0.01 10 

0.01 74 
0.01 57 
0.0084 
0.0070 
0.001 8 

0.0340 

0.0463 

0.0460 

0.0424 

s,, x 104 

0.0260 
-0.1 091 

0.1 046 
0.0305 

-0.031 1 

0.0786 
0.0053 

-0.0101 
-0.0020 

u x  104 

0.043 1 
0.0351 

0.0047 
0.0054 
0.0093 

0.01 46 
6.0084 
0.0060 
0.001 8 

aThe standard deviations (0) represent the goodness of fit to the data. They are 
based an the square roots of the diagonal terms in the covoriance matrix. In 
interpreting these deviations, the fallowing must be taken into account: (1) there 
still remain unknown biases in the data, and (2) the correlations are significant 
with respect to the data. Thus, i t  should be anticipated that improved estimates of 
the gravity coefficients may yield numbers which vory by several 0 from the 
above. 

Uased on: 

GMg = 4902.78 km3/rec2 

R g  = 1738.09 km. 

However, KozieYs reduction of data on physical libra- 
tions of the moon produces (Ref. 52): 

Jzo  = 2.054 X le4 (75) 

(76) 

(77) 

C,, = 0.231 X lo-’ 

s,, = c,, = s,, = 0 

under the assumption of uniform density. These are con- 
sidered to be the best values available at this time. 

Although lunar orbiter data do sample the lunar poten- 
tial, the best determination of the central term (Le., 
GM,) is derived from the Ranger and Surveyor deter- 
minations of GE (Ref. 53) and the earth-moon mass ratio 
obtained from Mariner V cruise phase data (Ref. 54 and 
Footnote 14, see also Section V). 

“Private communications, J. D. Anderson, results from recent analy- 
sis of Mariner V cruise and Venus encounter range and doppler 
tracking data using DE 40, May 7, 1968. 

Table 7.  Lunar gravity harmonics from Lunar Orbiters I ,  
111, and IV (preliminary LaRC estimatela 

Standard 
n m C,,& X io4 Deviation 

x 104 

2 0 -2.0596 0.141 
0.051 -0.1661 1 

2 0.2042 0.029 

3 0 -0.3773 0.1 80 
1 0.301 2 0.048 
2 0.1 294 0.028 
3 0.03 1 7 0.01 5 

4 0  0.0790 0.128 
1 -0.1 560 0.036 
2 0.001 1 0.01 0 
3 -0.0082 0.008 
4 -0.0007 0.003 

5 0 -0.5505 0.171 
1 -0.0385 0.037 
2 $0.0342 0.009 
3 -0.0071 0.002 
4 -0.0008 0.00 1 
5 -0.0003 0.0002 

nBased an: 

GMa = 4902.64 km3/sec2 

R g  = 1738.09. 

nBased an: 

GMa = 4902.64 km3/sec2 

R g  = 1738.09. 

s,,, x 104 

- 
0.0080 

-0.0342 

- 
0.1 762 

-0.0147 
-0.0043 

- 
0.0391 
0.0072 

-0.0001 
0.001 1 

- 
0.0829 

-0.0203 
-0.0078 
- 0.00 1 3 
0.0003 

Standard 
Deviation 
x 104 

- 
0.039 
0.025 

- 
0.053 
0.033 
0.01 8 

- 
0.028 
0.01 3 
0.006 
0.003 

- 
0.031 
0.008 
0.002 
0.00 1 
0.0002 I 
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B. Figure 

The figure of the moon is best represented by the work 
progressing at the Aeronautical Charting and Informa- 
tion Center (ACIC), St. Louis, Missouri, where charts on 
the scale of 1 to 1,000,000 covering 20 X 16" areas of the 
lunar surface are available (Ref. 55). Photographs ob- 
tained from Lunar Orbiters I through V will definitely 
enhance the existing maps and produce better overall 
continuity, including a complete view of the lunar far 
side (Ref. 56). 

The determination of lunar radii from the dynamical 
center, or center of mass, to surface points shows reduc- 
tions from values obtained from ACIC maps. This reduc- 
tion is attributable to an offset in the assumed ACIC 
center of figure from the center of. mass, as obtained from 
the JPL lunar ephemeris. Sjogren (Ref. 57) has deter- 
mined from Rangers V I - I X  impact data an offset 
of 2.5 km along the earth-moon line (Ax,  offset from 
center of figure to center of mass) between ACIC maps 
and the JPL ephemeris.15 Compton and Wells of LaRC 
(Ref. 58) using V/H (speed/height) data from Lunar 
Orbiter have also obtained a reduction of the nominal 
lunar radius of some 2 km with a 1- to 2-km bulge ill 

the central Sinus Medii area. Much more data remains 
to be processed especially out toward the limb (i.e., 
Ref. 58 covers 250"  longitude). Shapiro, et al. (Ref. 58a) 
of NRL, have also obtained 1- to 2-km decrease in the 
lunar radius from radar bounce data. 

C. Selenographic Coordinates 

From the laws of Cassini and the mathematical defini- 
tions of the small departures from these laws (called 

"Sturms at JPL, using Ranger impact time and photographic data, 
has obtained similar results for the ACIC center of figure: Ax 1 3.1 
a0.5, Ay -0.3 t0.8, Az = 0.6 k0.7. 

MEAN LUNAR\ ' 
EQUATOR 

/MEAN LUNAR 
/ ORBIT 

I 

Fig. 4. libration geometry 

physical librations), a relationship can be stated relating 
a coordinate system fixed with respect to the moon and 
the coordinate system aligned with the mean equinox 
and ecliptic of date. In terms of angular rotations about 
instantaneous axes, the transformation is (Fig. 4): 

' 

- 
( X ) s e l e n o g r a p h i c  ( + 7 - bd - + 18o")+s (I + p)-z 

x (a  + a>+, (z)rnean equinox and (78) 
e e l i p t i r o f d a t -  

where 

0 = longitude of ascending node of mean lunar 
orbit on ecliptic, measured from mean equi- 
nox of date 

C = mean longitude of moon, measured from equi- 
nox of date along ecliptic to ascending node, 
then along mean orbit 

I = inclination of mean lunar equator to ecliptic 

u = libration in node 

p = libration in inclination 

= libration in longitude 

The quantities a and C are derived from the lunar 
theory and are given as polynomials in time (Ref. 16, 
page 107). Expressions for the physical librations are the 
result of complex derivations involving the lunar theory 
and observationally determined values for several con- 
stants. Fairly comprehensive descriptions of the theory 
of physical librations are given in Refs. 57 and 59. 

The theory yields expressions which are sine series for 
T and l a  and cosine series for p in terms of fundamental 
arguments : 

where 

g = mean anomaly of moon 

= argument of perigee of moon 

g' = mean anomaly of sun 

0' = argument of perigee of sun 

The coefficients of the series are functions of two quanti- 
ties : 

I and f 
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where 

Argument Multipliers 

n m P q 

0 0 2 -2  
0 1 0 0 

0 - 1  1 - 1  
1 0 0 - 2  
1 0 0 - 1  
1 0 0 0 
2 - 1  0 - 2  
2 0 - 2  0 

0 - 2  2 0 

0 0 2 - 2  
0 0 2 0 

1 0 0 - 2  
1 0 0 0 

1 0 - 2  0 

B(C - B )  
A(C - A) 

Coefficient, 
arc sec 

(4 1.7 
91.7 
- 1.2 

4.2 
-3.5 
- 16.9 

1 .o 
15.3" 
10.0 

(b*)  -3.2 
- 10.6 

2.5 
- 1 00.7 

-23.8 

A,B,C = principal moments of inertia of the moon 

Koziel (Ref. 57) has performed the latest determinations 
of the physical libration constants based on heliometer 
data. The solution, including the free libration in longi- 
tude, is: 

I = l"32'1" +7'!1 (791 

f = 0.633 kO.011 (80) 

Using Koziel's values in a computer solution for the libra- 
tion theory, Eckhardt (Refs. 57 and 60) obtains: 

7 = X ai sin (nZ + mlf + p F  + 4 0 )  (81) 

ymbois 

7 

Iu 

P 

IU = IT + Xbi sin (nl + mlJ + p F  + 4 0 )  (82) 

p =z S C ~  COS (d + ml' + pF + 4 0 )  (83) 
where 

l = g  
lt = g? 

D = g - g' + w - 0) 

F = g + o  

and the coefficients and multipliers are given in Table 8. 
Terms with coefficients less than l'.'O are omitted. Con- 
sidering the uncertainties in the libration constants, it 
seems satisfactory to adopt a libration model containing 
only the largest terms in Table 8, e.g., terms greater than 
10': The free libration term in longitude, as determined 
by Koziel (Ref. 57), has an amplitude greater than 10" 
and should be included as follows: 

Asin [a + Qt] (84) 
where 

A = 18?7t4'.'7 

a = 334?3+15?7 

t = days from 1800.0 

(sin) 

(sin) 

(cos) 

)" [rad/day] 

GE = gravity constant for earth 

= perturbed semi-major axis of moon's orbit 

B - A  
Y = c  

The value of f and the moments of inertia can also be 
inferred from the values of the gravitational harmonics 
as follows (see particularly Ref. 61): 

G o  + 2c,, 
= c,, - 2c,, 

The recent determination by Tolson and Gapcynski 
(Ref. 51), shown in Table 7 for the values of C,, and C,,, 
yields 

f = 0.669 20.043 (86) 

On the other hand, the JPL determination (Table 6) pro- 
vides the rather high value of 

f = 0.828 20.06 (87) 

where the standard deviation indicated is a formal value. 

Because of the poor results from the Lunar Orbiter 
determination, KozieYs value should be adopted at this 
time. However, the gravity potential method should 
eventually provide the most accurate determination. 

The selenographic coordinates described so far are 
dynamic and are not strictly related to lunar surface fea- 
tures. Large efforts are underway at ACIC and AMS to 
relate surface features to a selenographic coordinate 

Table 8. Series for the physical librations of the moon 

Elmproved value from private communication with D. H. Eckhordt. I 
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grid. The heliometer analysis of Koziel also requires such 
a relation, which is given as the coordinates of Mosting A 
(Ref. 57): 

x = -5009’5W’ 1455 
p = -3O10’47’’ &4’!4 

h = 932’!98 t0’!19 

= 1738.7 km ~ 0 . 3 5  (ac = 384400 km) 

Determinations of coordinate grids are strictly done with 
respect to a system fixed at an assumed center of figure. 
Therefore, the location of a given feature from, say, an 
ACIC map, must be corrected by the offset of the center 
of figure from the center of mass, in order to obtain the 
coordinates with respect to the dynamical coordinate 
system defined above. 

Body 

Sun’ 
Mercury 
Venus 
Mars 
Jupiter 
Saturn 
Uranus 
Neptune 
Pluto 

IV. Planets and the Sun 

A. Planetary Figures 

The diameters of the planets are directly observed in 
terms of their apparent equatorial angular semi-diameters. 
Adopted values are reduced to unit distance (1 AU). The 
adopted values of semi-diameter at unit distance in 
the American Ephemeris (AE) are tabulated on page 491 
of Ref. 16, and are reproduced in Table 9, along with the 
conversion to km (1 AU = 149597893 km). The historical 
authorities for the adopted AE values are listed on 
page 194 of Ref. 16. 

AE Semi-Diameter Equatorial Radius, 
at 1 AU, see of arc ae. km 

959.63 695992. 
3.34 2422. 
8.41 6100. 
4.68 3394. 

98.47 71417. 
83.33 60437. 
34.28 24862. 
36.56 2651 6. 
10. 7253. 

Reference 16 also lists planetary radii in terms of earth 
radius, for “recent values for the angular semi-diameters,’’ 
for which sources are unidentified. These are used to 
determine the values from Ref. 16 in Table 10. 

- 
3 
3 
4 
- 
- 
- 
- 
- 

Improved values of the radii of Mercury and Venus 
are available through radar tracking of the planets and 
spacecraft (Refs. 62, 63, 64, and 65). The radius values 
adopted for Mercury and Venus were obtained from an 
averaging of the results in these references. Based on 
data from Mariner IV (Ref. 66) and an adopted value of 
the flattening, Cain infers (Ref. 67) an equatorial radius 
for Mars of 3393.4 t- 4.0 km. The JPL adopted values of 
planetary radii are given in Table 10. 

16 
63,64 
62,63,64 and 65 
67 
16 
16 
16 
16 
16 

The flattening of a planet may be observed by either 
direct observation of the equatorial and polar semi- 
diameters (geometric flattening), or inferred through the 
action of the equatorial bulge on its satellites (dynamic 
flattening). A relationship can be stated between the 
geometric flattening, f, and the dynamic flattening, in 

Table 9. Radii based on adopted AE semi-diameters 

Table 10. JPL-adopted radii 

Body 

Sun 
Mercury 
Venus 
Mars 
Jupiter 
Saturn 
Uranus 
Neptune 
Pluto 

Equatorial Radius 
km 

695992.0 
2435.0 
6052.0 
3393.4 

71 372.0 
60401 .O 
23535.0 
22324.0 
701 6.0 

References I Precision, 
km 

terms of the form factor, Jz, by assuming hydrostatic 
equilibrium (see Section 11-B), as follows: 

1 3 C-A 3 
5 C 2 
- 9- = - I J ,  = f - -p + O ( f )  

where 

C = polar moment of inertia 

A = equatorial moment of inertia 

No flattening has been observed by either method for 
Mercury, Venus, and Pluto. Processing of tracking data 
from Mariner V may eventually yield a value for Venus 
dynamic flattening. Dicke (Ref. 68) has made a series of 
measurements to detect an oblateness of the photosphere 
of the sun in which he quotes a value for f of (5.0 r+ 0.7) 
X lo+. However, this result is considered to be pro- 
visional at this time. Furthermore, there is some contro- 
versy over the issue of inferring from a photospheric 
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oblateness a corresponding oblateness for the solar inte- 
rior and, hence, a derived value for J,. Consequently, the 
JPL-adopted value for J, of the sun is zero. Furthermore, 
the adopted value for all harmonic coefficients of the sun 
and the planets (except the earth and moon) higher than 
degree 2 is zero. Table 11 is a listing of JPL-adopted 
geometric flattening and corresponding Jz and Table 12 
is a listing of JPL-adopted dynamic form J, and corre- 
sponding f .  

Reference 

69, page 25 
16, page 139 

16, page 491 
16, page 139 

- 

Table 1 1. JPL-adopted geometric flattening 
and corresponding J ,  

Computed Jz 

0.0055 
0.01 61 
0.022 
0.023 
- 

Planet Observed f 

0.01 05 
Jupiter 0.0667 
Saturn 0.1 05 
Uranus 0.0625 
Neptune 

Planet 

Mors 
Jupiter 
Saturn 
Uranus 
Neptune 

Observed Jz Reference Computed f 

0.001 97 67'69 0.00525 
0.0296 16, page 328 0.0878 
0.027 16, page 328 0.1 15 

- - None 
0.0035 16, page 390 0.01 77 

Table 12. JPL-adopted dynamic form Jz 
and corresponding f 

B. Planetary Rotations 

The rotation of the planets and the sun can be 
obtained from observations of surface features, action 
on planetary satellite orbits, and radar spectra. A com- 
plete specification of the rotation includes : 

(1) Adopted values of the right ascension and declina- 
tion of the pole at some reference epoch,ao(to), So( to) .  

(2) The rates of right ascension and declination of the 
pole, 6, 6.  

(3) An adopted value of the hour angle of the vernal 
equinox measured from the prime meridian at 
some reference epoch, Vo(c). 

(4) The sidereal period of rotation, P .  

Item 1 is conventionally given with respect to the mean 
earth equator and equinox of date. The convention of 
this document is to take the north pole in the direction 
of the angular momentum vector, which for Venus is in 
the south ecliptic hemisphere. 

28 

Item 2 then is the sum of the precessions of the earth's 
equator on the ecliptic and the planet's equator on its 
orbit. 

. 

Item 3 is generally computed from the adopted value 
of the central meridian at some reference epoch. Com- 
plete specifications are adopted for the sun, Venus, Mars, 
and Jupiter. The rotation period is given for all planets. 
The form of the specifications is: 

a = a, + rqt-t,) 

s = 6, + &-to) 

(89) 

(90) 

hr V = V o + -  t -  P (  

In the following expressions, t refers to Besselian date 
(see Section 11-E-9) and JD to Julian Ephemeris date. 

1.  Sun. The rotational data for the sun is as follows 
(Ref. 16, page 307)16: 

a = 285?82 + 0.001993 (t - 1850.0) (92) 

6 = 63'162 + 0.001518 (t - 1850.0) (93) 

P = 25.38 d (95) 

V = 180" + 14.18439716 (JD - 2398220.0) (94) 

2. Mercury. The rotational data for Mercury is as 
follows (Refs. 70, 71, 72, and 73): 

The % synchronism of Mercury's rotation with its orbital 
motion was discovered in 1965 by Pettengill and Dyce 
(Ref. 72), but the precision obtainable with radar tech- 
nique is considerably poorer than is possible, at least in 
principle, from optical data. The adopted figure is based 
on a recent re-examination of Pic du Midi data (Ref. 73). 

3. Venus. The rotational data for Venus is as follows 
(Refs. 74 and 75): 

a = 98" - 0.0015551 (t - 1964.5) 

6 = -69" - 0.0007748 (t - 1964.5) 

(93) 

(94) 

(95) 

P = 242.6 d (96) 

V = 238.75 + 1.483924 (JD - 2438566.5) 

"The adopted rotational period is that associated with the mean 
synodic rate (see Ref. 16, pages 307 and 489). 
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It should be noted that, for Venus, V is measured from 
the vernal equinox (i.e., the ascending node of the orbit 
on the equator) in the direction of rotation to the prime 
meridian. Because of Venus' retrograde rotation, the 
obliquity of the orbit is greater than go", and the longi- 
tude of the central meridian, LCM, on 2438566.5 is 40", 
taken positive in the direction of rotation (or -40" in 
the AE convention, which is positive west, to be used in 
the equation V-A, = LCM.). This is opposite to the 
selections shown in Refs. 74 and 75. 

4. Mars. The rotational data for Mars is as follows 
(Refs. 76 and 77): 

a = 3168'155 + 0.006751 (t - 1905.0) 

S = 528'185 + 0.003480 (t - 1905.0) 

(97) 

(98) 

(99) 

(100) 

V = 149?475 + 350.891962 (JD - 2418322.0) 

P = 24h 37'" 22~6689 

It should be noted that the rates I?, 6 are computed as 
in Ref. 77; the values of 6, and, therefore, Vo(t',), differ 
from those adopted in AE 1968, but are consistent with 
the values to be adopted beginning with AE 1971.17 

5. Jupiter. The rotational data for Jupiter is as follows 
(Ref. 16, page 338; Ref. 76): 

a = 2688'10035 + 0.00103 (t - 1910.0) (101) 

6 = 64?5596 - 0.00017 (t - 1910.0) (102) 

P = 9h50"30~003 (104) 

V = 2818'1001 + 877.90 (JD - 2414120.0) (103) 

It should be noted that System I for the equatorial region 
is adopted. 

6. Saturn. The rotational data for Saturn is as follows 
(Ref. 16, pages 365, 491): 

a = 388'16159 + 0.00011802 (JD - 2435000.5) 
(105) 

(106) 

P = loh 14" (107) 

S = 838'13308 + 0.00001182 (JD - 2435000.5) 

"Private communication, R. L. Duncombe, April 17, 1968. 
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7. Uranus The rotational data for Uranus is as follows 
(Ref. 16, pages 387, 491): 

a = 768'1051 + 0.0142 (t - 1900.0) (108) 

6 = 14?855 + 0.0013 (t - 1900.0) (109) 

8. Neptune. The rotational data for Neptune is as 
follows (Ref. 16, pages 391, 491): 

a = 2958'1153 + 0.008364 (t  - 1900.0) (111) 

S = 41?348 + 0.002367 (t  - 1900.0) (112) 

P = 14h (113) 

9. Pluto. The rotation period for Pluto is as follows 
(Ref. 16, page 491): 

P = 6.39 d (114) 

For those planets having defined poles, additional 
angles describing the orientation of orbit and equator 
can be obtained as in Section 11-G of Ref. 16. Mean 
orbital elements are taken from Section 4-D of the same 
reference. 

C. Planetary Orbits 

For mission design and other qualitative purposes, a 
convenient and moderately accurate representation of 
the planetary motions is often very useful. With this in 
mind, the mean elements of the major planets are pre- 
sented in Table 13; the sources for this material are 
given in Ref. 15, pages 111 and 114. Osculating elements 
for JED 2433280.5 presented in Table 23 are based on 
planetary theories very similar to those from which 
Table 13 is derived. The mean Keplerian elements 
in Table 13 are referred to the mean equinox and ecliptic 
of date for all planets except Pluto. For elements of 
Pluto, the use of the osculating elements in Table 23 is 
recommended. The epoch is 1900 January 0.5 ET or, 
equivalently, JED 2415020.0. The time interval from the 
epoch is denoted by T when measured in Julian cen- 
turies of 36525 ephemeris days, by D = 3.6525 T when 
measured in units of 10000 ephemeris days, and by 
d = 10000 D = 36525 T when measured in ephemeris 
days. 
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Table 13. Mean ecliptic elements" 

CY = 1.00000 023 
L = 99O 41'48'104 + 1296 02768!' 13 r + I!' 089 r' 
= 99" 69667 8 + OP 98564 73354 d O P  00002 267 DZ -- 

w -  101" 13'15!'00+ 6189:'03~+ i!'63rZ+ 0 ! ' 012~~  
= 101 P 22083 3 + OP 00004 70684 d -'r OP 00003 39 D2 + 0: 00000 007 D3 

M = 358" 28' 33'' 04 + 1295 96579!' 10 T - o!' 54 r? 
- 0:' 012 r3 

I Mercury 

I 

= 358:47584 5 + Or98560 02670 d - OPOOOO1 12 D? 
- OP 00000 007 D3 
0.01675 104 - 0.00004 180 T - 0.00000 01 26 TZ 

= 0.01675 104 - 0.00001 1444 D - 0.00000 00094 D' 
e 

a = 23" 27' 08:' 26 - 46'' 845 T - 0:' 0059 TZ + 0!'00181 T3 
= 23:45229 4 - OP00356 26 D - 0~00000 0123 DZ 

+ OP 00000 00103 D3 
?r = 074711 - O!' 0007 T = 0~00013 086 - OPOOOOO 0053 D 

II 1 173" 57.'05 + 54.'77 T = 173" 9510 - O"499 D 

a = 0.38709 86 
i = 7" 00' lo'! 37 + 6'' 699 T - O!' 066 T' 

Q = 47" 08' 45'' 40 + 4266:' 75 T + 0:' 626 TZ -- w - 75" 53' 58!' 91 f 55991 76 T + l!' 061 T' 
n* = 53 81016'1 3093 - O!' 00049 5 T 

Jupiter 

-- n*  = 109256" 6481 w - 72' 42'41:' 12 f5800!'79 T 
e = 0.0483376 f 0.00016302 T 

M = 136' 37' 44:' 88 + 299:' 123557 d 
a = 5.202803 
i =  1' 18'31'130- 20!'00T 
= 99" 26' 161 30 + 36391 50 r 

*Definitions of symbols: 

n* = the sidereal mean motion i n  a Julian year 

a = the perturbed semi-major axis of the orbit; n ,  the mean daily motion, and a are related by $03 = k? (1 4- m), where k i s  the Gaussian gravitational constant and 
m i s  the mass of the planet expressed i n  terms o f  the sun's mass 

i = the inclination of the orbit to the ecliptic 

Q = the longitude of the ascending node of the orbit o n  the ecliptic, measured from the equinox 

0 = the longitude of perihelion, measured from the equinox along the ecliptic to the node, and then along the orbit from node to perihelion, i.e., W = Q 4- W, where 
W is the orgument of perihelion 

e = the eccentricity of the orbit 

M = the mean anomoly, defined by the relation M = n (time i n  days since perihelion passage); this is related to L, the mean longitude, by the relotion L = M 4- 
E = mean obliquity of the ecliptic 

T = annual rate of rotation of the ecliptic 

= longitude of axis o f  rotation of the ecliptic 

the superscript r denotes revolutions 

N 

- 

t 
* 

e = 0.20561 421 + 0.00002 046 T - 0.00000 0030 T' 
M = 102" 16' 45!' 77 f (41Y + 2 61055!' 04)T + 0:' 024 T' f 

L = 178' 10'44!'68 + (415' + 2 66654" 80)T + 1:' 084 1' 
= 102: 27938 1 + 4: 09233 44364 d OP 00000 050 D? 

= 178: 17907 8 f 4: 09237 70233 d f 0: 00002 26 D' 
I 

Venus 
I 

a = 0.72333 16 
i = 3' 23' 37:' 07 + 3'1 621 T - O!' 0035 T' 

Q = 75" 46' 46'' 73 + 3239'1 46 T f 1'1 476 T' 
w -  130°09'49!'8+ 5068!'93T- 3'.515TZ 

n* = 21 06631" 3832 + 0:' 00009 6 T 

-- 
e = 0.00682 069 - 0.00004 774 T f 0.00000 0091 T' 
M = 212'36' 11'.'59 + (162'+ 7 12093795)T + 4!'6298 T' 

= 212: 60321 9 + 1: 60213 01540 d + 0: OOOO9 6400 D' 
L = 342" 46'01139 f (162' + 7 17162188)T + l!' 1148 T' 
= 342 P 76705 3 + 1 P 602 16 87039 d + 0: 00002 32 12 D' 
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Saturn 

w -  n' = 439961 18875 w - 91 05' 19:' 72 + 7053:' 97 T 

M = 174" 19' 45:' 64 + 120:' 39926 d 
a = 9.538843 e = 0.0558900 - 0.00034705 T 
i = 2' 29' 33:' 30 - 16!' 00 T 

a =  112"47'00!'84+3143!'43T - 

n* = 15426" 33375 
a = (19.182281 - 0.00057008 T) 
i = 00" 46' 211 80 + 2!' 00 T 

bb = 73" 29' 231 65 + 18381 25 T 

Neptune 

-4- o - 169" 02' 11'1 22 + 58461 80 T 
e = 0.0470463 -k 0.00027204 T 

M = 73" 35' 18!' 25 $. 42" 2131 d 

n* = 7864'1 563 
a = (30.057053 -k 0.001210166 T )  
i =  1°46'45!'30- 33'100T 

bb = 130' 41' 431 27 + 3966'' 54 T 

D. Planetary Satellites 

Each of the major planets, from earth to Neptune, 
possesses one or more natural satellites. Earth's own 
satellite, the moon, is treated in Section I11 of this docu- 
ment. Therefore, this section will be restricted to a brief 
discussion of the satellites of the other planets. 

'v- w - 43" 45' 49'1 24 f 3161'!45 T 
e = 0.00852849 -k 0.00007701 T 

M = 41" 16' 50'' 73 f 21!' 3092 d 

The most notable thing about the planetdry satellites 
is the degree to which knowledge of them is incomplete 
and inhomogeneous. Masses, even very approximate 
ones, are known for less than half of these satellites, 
physical dimensions for even fewer, compositions are 
quite unknown. It is doubtful that an entirely satisfactory 
orbital theory exists for any one of them, and the theories 
that do exist are frequently difficult to compare with one 
another on a rational basis. Numerical integration of the 
equations of motion are available for only a few objects. 
Therefore, it would require a major effort of doubtful 
reliability to provide a consistent set of data, such as 

osculating elements at some common epoch, for all of 
these objects. Accordingly, Table 14 lists conventional 
values of the semi-axis, sidereal period, eccentricity and 
inclination, the mass and radius (if known), the author of 
the most reliable published orbit, the availability of 
ephemerides, and the investigators known to be currently 
interested in improving the orbits. 

Many of the satellites are subjected to very strong 
perturbations arising from solar attraction, planetary 
oblateness, or mutual resonances. Therefore, the orbital 
data are given primarily for informational purposes 
rather than computational. As an extreme example, 
Jupiter VI11 varies from 0.3 to 0.66 in osculating eccen- 
tricity in a relatively short span of time. The orbits for 
the Uranian satellites are extremely uncertain. As may 
be seen from their radii, the Galilean satellites (Jupiter I 
through IV) are large enough to be significant for close 
encounter missions to Jupiter. Two of them are suspected 
of having atmospheres. 
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Table 14. Orbitul und physical data of planetary satellites" 

Planet 

Mars 1 (Phobos) 
II (Deimos) 

Jupiter I (lo) 
II (Europa) 
Ill (Ganymede) 
IV (Callisto) 
V 
VI 
VI1 
Vlll 
IX 
X 
XI 
XI1 

Saturn 1 (Mimas) 
II (Enceladus) 
111 (Tethys) 
IV (Dione) 
V (Rhea) 
VI (Titan) 
VI1 (Hyperion) 
VI11 (lapetus) 
IX (Phoebe) 
X 

Uranus I (Ariel) 
II (Umbriel) 
Ill  (Titania) 
IV (Oberon) 
V (Miranda) 

Neptune I (Triton) 
II (Nereid) 

a, AU 

0.0627 
0.1 570 

0.00282 
0.00449 
0.0071 6 
0.01 259 
0.001 21 
0.07672 
0.07846 
0.1 572 
0.1 585 
0.07705 
0.1 5083 
0.14177 

0.001 24 
0.001 59 
0.001 97 
0.00252 
0.00352 
0.008 1 7 
0.00989 
0.02380 
0.0% 65 8 

Undetermined 

0.001 28 
0.001 79 
0.00293 
0.00392 
0.00085 

0.00236 
0.0371 8 

P, days 

0.319 
1.262 

1.769 
3.551 
7.1 54 

16.689 
0.49% 

250.6 
259.6 
737. 
758. 
253. 
692. 
631. 

0.942 
1.370 
1.887 
2.737 
4.51 7 

15.95 
21.28 
79.33 

550.4 

2.520 
4.1 44 
8.706 

1.414 

5.877 

13.46 

360. 

alnclination with respect to: 
A = lapbcian plane 
B = planetary equator 
C = planetary orbit 
D = ecliptic 
E = earth equotor 

Mae: 
Number in parenthesis is power of 10, e.g., 2(2) = 2 X 102 
Mass unit is inverse mass referred to planet 

Ephemeris source: 

A = American Ephemeris and Nautical Almanac 
I = IAU circulars when available 

e 

0.01 70 
0.0031 

0 
0.0003 
0.001 5 
0.0075 
0.0030 
0.1 580 
0.2072 
0.40 
0.275 
0.1 405 
0.206% 
0.1 687 

0.0201 
0.0044 

0 
0.0022 
0.001 0 
0.0291 
0.1 042 
0.0283 
0.1 632 

0 
0 
0 
0 
0 

0 
0.7493 

i, deg 

0.95 A 
1.73 A 

O B  
O B  
O B  
O B  

0.4 B 
28.4 C 
27.8 C 

147. C 
157. C 

28.4 C 
163.4 C 
146.7 C 

1.52 B 
0.03 B 
1.10 B 
0.03 B 
0.34 8 
0.33 B 
0.43 8 

18.4 D 
173.9 D 

O B  
O B  
O B  
O B  
O B  

159.9 8 
27.8 E 

Mars tadiur, 
km 

7 

1670 
1460 
2550 
2360 

700 
2440 

2000 

- 

Orbit 

Struve 
Struve 

de Sitter 
de Sitter 
de Sitter 
de Sitter 
van Woerkom 
Bobone 
Bobone 
Grosch 
Nicholson 
Wilson 
Herget 
Herrick 

Struve 
Struve 
Struve 
Struve 
Struve 
Struve 
Struve 
Struve 
Zadunaisky 

Struve, Newcomt 
Struve, Newcomt 
Struve 
Struve 

Alden 
V. Biesbroeck 

Ephemeris 

A1 
A1 

A5 
A5 
A5 
A5 
A4 
A3 
A3 
12 
12 
12 
12 
12 

A1 
A1 
A1 
A1 
A1 
A1 
A1 , A3 
Al, A3 
A3 

A1 
A? 
A1 
A1 

A1 

Ephemeris type: 
1 =apparent distance and position angle 
2 z Q . 8  
3 = Au, A8 
4 = elongation times 
5 =geocentric phenomena 

Known current investigators: 
B = A. Bec, Bureau des longitudes, Paris 
H = P. Herget, Cincinnati Observatory 
K = J. Kovalevsky, Bureau des longitudes, Paris 

Ma = 8. G. Marsden, Smithronian Astrophysical Observatory 
M e  = S. F. Mello, SBo Paul0 
Mu = J. D. Mulholland, JPL 
W = G. A. Wilkins, Royal Greenwich Observatory 

Known 
Current 

nvestigatorr 

W 
W 

Ma, Me  
Ma, Me 
Ma, Me 
Ma, Me 

8, H, Mu 
B, H, Mu 
8, H, K 
B, H 
B, H, Mu 
8, H 
9 H 

K 
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V. Astronomical Constants 

A. The International Astronomical Union System 

In many fields of Astronomy, it is necessary to compare 
observations made over wide spans of time. So as to have 
a common basis for comparison, it is essential that star 
catalogs and ephemerides be based on a fixed and 
consistent set of astronomical constants. Consequently, 
there is a reluctance to introduce new determinations of 
constants into theories of celestial mechanics, ephem- 
erides, or star catalogs. On the other hand, in space 
trajectory and navigation applications, it is important that 
the most accurate set of constants available be used. 
This has resulted in a dual system in a sense: (1) the set 
of nearly self-consistent constants used by the astronomi- 
cal community not readily subject to change, and (2) the 
set of constants used in space technology which expe- 
riences almost continual updating. 

The official organ for establishing the astronomical 
constants is the International Astronomical Union (IAU). 
In 1963, the directors of the principal national and inter- 
national ephemerides, together with other experts, met 
in Paris to consider the system of astronomical constants 
(Ref. 78). This was the fourth such meeting; the first one 
occurred in 1896. The primary motivation for this meet- 
ing was due to improvements in certain constants 
resulting from early space applications, such as Mariner 2 
and planetary radar bounce measurements. A working 
group was organized at this meeting to establish a new 
system of astronomical constants. The report of this 
working group was approved during the 12th General 
Assembly of the IAU in 1964, and is included in the 
proceedings (Ref. 7). The Working Group defined three 
categories of constants as defining constants, primary 
constants, and derived constants. 

The number of ephemeris seconds in 1 tropical year 
and the Gaussian constant are the two defining constants. 
These constants define the units of time and length used 
in Celestial Mechanics and are not subject to improve- 
ment. 

The choice of constants designated as primary is based 
mainly on the direct nature of their determination, 
although, in some cases, the designation of primary or 
derived is rather arbitrary. The designated primary con- 
stants form an independent set. With the list of auxiliary 
constants and factors, all derived constants may be 
directly determined from these defining and primary 
constants. 

The IAU system of constants is presented in Table 15, 
and the set of accompanying notes are presented in the 
Appendix. The constants and notes have been taken 
directly from the report of the Working Group (Refs. 7 
and 76). These accompanying notes include explanatory 
material, differential correction factors relating derived 
quantities to primary quantities, and error bound esti- 
mates on the primary constants. (For a more extensive 
discussion of this system see Refs. 7 and 22.) 

B. The Adopted JPL System 

During the past few years, dramatic improvement in 
astronomical constants has been achieved through the 
use of spacecraft radio tracking data and planetary radar 
bounce measurements. This is emphasized by the fact 
that certain constants in the IAU system of 1964 are out 
of date and of insufficient accuracy for astrodynamic 
purposes. For this reason, it became necessary to modify 
the IAU system to a system suitable for space trajectory 
and navigation purposes; this modified system is called 
the adopted JPL System of Astronomical Constants 
(Tables 16 and 17). 

With one exception, JPL's choice of primary and 
derived constants is the same as the IAU system. The 
exception is JPL's choice of the light time of 1 AU, rA, 

as a primary constant and the astronomical unit in 
kilometers as a derived constant. The rationale for this 
choice is because of the precision with which rd may be 
determined from planetary radar bounce time delay 
measurements. The current estimated accuracy of rA is 
15 psec, or approximately 0.03 ppm. The accuracy of 
the astronomical unit A, expressed in metric units such 
as kilometers, depends on the measured value of the 
speed of light through the relation A = c T ~ .  The accuracy 
of c is approximately 0.3 km/sec or 1 ppm. Thus, not 
only is rA the quantity that is directly measured, but it is 
also one of the most precisely determined constants in 
astronomy. 

A further consideration for JPL's choice of rT1 as a 
primary constant is the superfluous nature of the meter 
as a unit of distance in deep space trajectory and navi- 
gation applications. The light-second (the distance trav- 
eled in a gravity-free field by a photon in 1 ephemeris see) 
is the fundamental distance unit in deep space appli- 
cations. With this choice of unit, the velocity of light in 
metric units is explicitly absent in the observable equa- 
tions for range and doppler measurements (see Ref. 79, 
for example). The range observable become a time-delay 
observable and the doppler observable becomes the 
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Table 15. IAU system of constants 

Constant Constant Value 

Defining constants 

seconds in 1 tropical 
year (1900) 

2 Gaussian gravitational 
constant, defining 
the AU 

k = 0.01720209895 

Value 

IAU primary constants 

3 Measure of 1 AU in m 
4 Velocity of light in 

mlsec 
5 Equatorial radius for 

earth in m 

Planet 

Mercury 
Venus 
Earth f moon 
Mars 

Saturn 
Uranus 
Neptune 
Pluto 

Jupiter 

6 Dynamical form-factor 

7 Geocentric gravita- 
for earth 

tional constant 
(units: rn 's2 )  

8 Ratio of the masses of 
the moon and earth 

9 Sidereal mean motion 
of moon in rad/sec 
(1 900) 

10 General precession in 
longitude per tropical 
century (1900) 

11 Obliquity of the 
ecliptic (1900) 

12 Constant of nutotion 
(1 900) 

Reciprocal mass 

6000000 
408000 
329390 

3093500 
1047.355 
3501.6 

22869 
19314 

360000 

A = 149600 X 10' 
c = 299792.5 X lo3 

a, = 6378160 

Jz = 0.0010827 

GE = 398603 X log 

p =  1/81.30 

nC* = 2.661699489 x lo-' 

p = 5025!'64 

e = 23"27'08!'26 

N = 9!'210 

I Auxiliary constants and factors 

kl86400, for use when 
the unit of time is 
1 sec 

arc in 1 rad 
Number of seconds of 

Factor for constant of 
aberration (note 15) 

Factor for mean distance 
of the moon (note 20) 

Factor for parallactic 
inequality (note 23) 

k' = 1.990983675 X lo-' 

= 206264.806 

Fx= 1.000142 

Fz = 0.999093142 

F3 = 49853'12 

I I 

change in phase time delay per unit time. The only 
necessity for c in metric units is in the matching of launch 
trajectory and ballistic trajectory initial conditions (also, 
in the application of midcourse maneuvers); launch tra- 
jectories are in metric units, since the thrust of the launch 
vehicle is calibrated in metric units. However, the error 
ih this matching process because of an error in c is 
negligible compared to execution errors in the guidance 

13 Solar parallax 

14 light time far unit 
distance 

15 Constant of aberration 

16 Flattening factor for 
earth 

17 Heliocentric gravita- 
tional constant (units: 
m3Ss") 

18 Ratio of masses of sun 
and earth 

19 Ratio of masses of sun 
and earth f moon 

20 Perturbed mean 
distance of moon, 
in meters 

21 Constant of sine 
parallax for moon 

22 Constant of lunar 
inequality 

23 Constant of parallactic 
inequality 

arcsin (oe/A) = n;o = 8Y79405 (81794) 

A/c I= T A =  4995 012 
1"/0.00200396 

FI&'T,, = K = 20!'4958 (20!'496) 

f = 0.0033529 
= 11298.25 

A3k" = GS = 132718 X 1015 

(GS)/(GE) = S/E = 332958 

SlE(1 f p ) =  328912 

a./aa = sin T C  = 3422!'451 

--- - L = 6!'43987 (6!'440) 
1 f p  A 

CL 

system. All of the constants appearing in space appli- 
cations involving distance have been determined in terms 
of light-seconds more accurately than in any other unit. 
The gravitational constant (GM) of a planet, for example, 
is determined in units of (light-se~)~/sec~. It follows that 
space trajectories and observables described in terms of 
units of light-seconds and seconds, along with the re- 
quired constants expressed in the same units, form a self- 
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Table 16. JPL-adopted astronomical constants-primary constants 

Constant 

Solar parallax 

Measure of 1 AU in km 

Constant of aberration 

Flattening factor for earth 

Heliocentric gravitational constant (km3/sec2) 

Ratio of masses of sun and earth 

Ratio of masses of sun and earth plus moon 

Perturbed mean distance of maon in km 

Constant of sine parallax for moon 

Constant 

Symbol 

TI3 

A = CTA 

K = Fik'Ta 

f (see Section 11-A for definition) 

GS = A3kfa 

S / E  
S / W  + P )  

FZ [GE(l f ~ ) n ; * ] ' ' ~  = aa 

a,/aa = sin ma 

Light time for 1 AU in A.l secn 

Speed of light in km/sec 

Equatorial radius for earth in km 

Dynamical form-factor for earth 

Geocentric gravitational constant (units: k ~ n ~ s - ~ )  

Ratio of the masses of the earth and moon 

Sidereal mean motion of moon in rad/sec (1 900) 

General precession in longitude per tropical century (1 900) 

Obliquity of the ecliptic (1 900) 

Constant of nutation (1 900) 

Constant of parallactic inequality 

lunar gravitational constont (km3/sec2) 

Symbol 

1 - P  oa 
F3--- 

l + p  A -'a 
G M = p G E  

7 1  

C 

a, 

JZ 
GE 

P-' 

4 
P 
e 

N 

Value 

499.004700 

299792.5 

6370.1 60 

0.001 0027 

390601.2 

81.3010 

2.661699489 X 10-6 

5025!'64 

23 '27'00 ''26 

9121 0 

Accuracy 

0.00001 5 

0.3 

0.005 

0.4 

0.001 

0.5 x 10-15 

1 '.'o 
0!'1 

o"o1 

Source 

Refs. 62, 63, and 64 

IAU 

IAU, Ref. 3 

IAU, Ref. 4 

Ref. 01 

Ref. 04 and b 

IAU 

IAU 

IAU 

IAU 

nThe length of on A.l second and on ET second are considered to b e  the some in this report. 
bprivote communications, 1. D. Anderson, results from recent analysis of Mariner V cruise and Venus encounter range and doppler tracking data using DE 40, May 7, 1968. 

Table 17. JPL-adopted astronomical constants-derived constants 

Constant of lunar inequality 1 

Value 

8'1794 1 7 

149597093.0 
20'.'4955 

= 0.0033529 i = 11298.25 

13271 2499 X 1 O3 

332945.6 

320900.1 

384399.3 

3422!'457 

6!'43907 

12419073 

4902.70 

Accuracy 

5.0" 

0.6 x 10-7 

5 x 10-7 

15 x 103" 

0.4 

0.4 

0.2 

O"004 

0~~00000~ 

O~'OOOla 

0.06 

consistent system; the metric value of c is not required 
to completely describe this dynamic process. At JPL, for 
conceptual convenience, space applications quantities are 
often expressed in terms of kilometers and seconds, such 

e AU, and probable errors for these quantities 
are quote6 assuming that c has exactly the IAU value of 
299792.5 kni/sec. It should be remembered, however, 
that this is for conceptual convenience only. 

The moon-to-earth mass ratio p has been retained as 
a primary constant, although there is some argument to 
do otherwise. The planetary probes measure the lunar 
inequality directly (Ref. 80), while the lunar probes 
measure directly and separately the GM values of the 

earth and the moon. It appears that, at present, the plan- 
etary probes give a slightly more accurate determination 
of I*. 

The JPL choice of planetary masses (Table 18) differs 
signscantly from the IAU system, which, of all the IAU 
constants, are the most seriously out of date. Even the 
IAU noted the need for a revision (see item 24 in the 
Appendix). The accuracies of the mass values of Venus, 
the earth, the moon, and Mars have improved by two 
or three orders of magnitude through the use of space- 
craft measurements (Refs. 54, 80, 81, 82, and 83). These 
refined mass values are needed for accurate radio 
guidance and have been adopted at JPL. After tampering 
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Table 18. JPL system of planetary masses 

Body Reciprocol mass 

Sun 1 
Mercury 5983000 +- 25000 
Venus 408522 _+ 3 
Earth a n d  moon 328900.1 k 0.3 
Mars 3098700 t 100 
Jupiter 1047.3908 0.0074 
Saturn 3499.2 f 0.4 
Uranus 22930 t 6 
Neptune  19260 k 100 
Pluto 181 2000 t 40000 

Reference 

a 

88, b 
81 

84,85 
84 
84 
d 
e 

C 

with the inner planet IAU mass values, it was decided 
to simultaneously incorporate a more recent set of values 
for the outer planets that are, in the cases of Jupiter and 
Saturn, significantly improved (Refs. 84, 85, and 86). 

Because the spacecraft measurements provide direct 
determinations of GM in (light-~ec)~/sec*, for those 
objects for which spacecraft measurements are involved, 
the reciprocal mass is computed from the ratio GM/GS, 
where GS is the derived heliocentric gravitational con- 
stant in (light-se~)~/sec~. 

It should be recognized that JPL’s choice of planetary 
mass values introduces a small inconsistency with respect 
to the centennial rate terms of the expressions for the 
precession constants given in Section I1 (Eq. 36) which 
are based on the IAU mass system. This inconsistency 
may be removed through the differential correction pro- 
cedure provided in Ref. 19. However, it has long been 
recognized that the IAU constant of general precession in 
longitude per tropical century, p ,  is in error by at least 
0!’8 per century. This error produces, in turn, correspond- 
ing errors of similar size in the centennial rate terms of 
lo, 2, and e that are two orders of magnitude larger than 
the inconsistencies introduced by JPL’s new planetary 
mass values. Similarly, the inconsistency caused in the 
obliquity is an order of magnitude lower than the uncer- 
tainty noted earlier for that quantity. There is a good 
argument in the astronomical community for not chang- 

ing the value of p for the sake of preserving consistency 
among star catalogs. It is safe to say that this subject area 
involving precessional constants and possible changes in 
value of these constants, from the point of view of JPL, 
has an unsatisfactory status at this writing and needs 
considerable review. 

Finally, there are several important relationships among 
the astronomical constants in addition to the IAU-derived 
constants (see for example, Ref. 87) which should be 
explored for self-consistency with these JPL values in 
hand. This task is beyond the scope of this report. 

In addition to the auxiliary constants and factors listed 
under the IAU system, the constants listed in Table 19 
are provided. 

Table 19. Auxiliary consfanis 

Constant 

Universal gravitational 
constant (Ref. 89) 

Pi 

B a s e  for natural logarithms 
Fee t  t o  meter’ 
Statute mile t o  kilometer’ 
N e w  international nautical 

mile ta  kilometer 
Radians t o  d e g r e e s  

Symbol 1 V a l u e  

6.673 X 1 0-23km3se~-2g-1 

3.1 41 5926536 . . . 
2.71 8281 828 . .  . 
0.3048 (exactly)  
1.609344 (exactly)  
1.852 ( exac t ly )  

57.29577951 . . . 
“Based on the new internnfionnl h c h  = 2.54 cm, exactly. 

C. Solar Pressure 

Solar pressure acceleration on a spacecraft is presently 
modeled with the following vector expression: 

r = % [G + G’ (< EPS) + AG] (115) 
mr SI, 

where 
JA : c, = - 
C 

J = solar flux constant = 2.00 kO.01 g cal/min 
cm2 (determined by Johnson, 1954, see Ref. 
90). From this value of J, it follows that 
C ,  = 1.04 X lo8 km3/kg/sec2m2. Sun spot 
cycles of 11 years and solar flares may affect 
this value by 2% 

tlp = the sun-lit area of the spacecraft projected 
onto a plane normal to the sun-spacecraft 
line, m2 
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m = instantaneous mass of probe, kg means and recorded in simple format onto magnetic - - - 
tapes. These tapes are preserved permanently in archives 
designated as the source tape library. G = effective area which is a function of the 

size, shape, orientation, and reflective char- 
acteristics of the parts of the spacecraft 
exposed to sunlight divided by A,. Refer- 
ence 82 (pp. 8-10, 187-188) gives detailed 
example. 

d G  
d 4 EPS 

G' 

4 EPS = earth-probe-sun angle, radians; to account 
for antenna position 

AG = increments on G input as a function of time; 
to compensate for moving parts on the 
spacecraft or degradation of the surface 
reflectivity as a function of time 

A, = mean distance between the earth and sun 

c = velocity of light 

r,, = sun-probe distance 

VI. JPL Ephemeris Tape System 

A. Description 

Predictions of the motion of celestial bodies can be 
presented in either of two forms: (1) as general but com- 
plicated formulas, with time as argument, from which 
position at any epoch can be computed, or (2) as tables 
listing positions at discrete, pre-specified epochs, from 
which positions at other than tabular epochs can be 
obtained by interpolation. These tables are called ephem- 
erides. Predictions computed by a special perturbation 
method can be presented only in ephemeris form. 

Because of the many current investigations into the 
motion of the moon and planets, no set of predicted 
motions now available can be considered final. Accord- 
ingly, the procedures, computer programs, and tape 
archives of ephemeris data that were used in preparing 
the new ephemerides have been collected into an oper- 
ational system that will permit the issuing of updated 
ephemerides whenever a new issue is desirable and feasi- 
ble. This system is called the JPL Ephemeris Tape Sys- 
tem. The tapes issued under this system are called JPL 
Ephemeris Tapes. These tapes may be used directly by 
digital computer programs that require predictions of 
lunar and planetary positions and velocities. 

Input to the system consists of predictions of the posi- 
tions of the moon and planets obtained by a suitable 

The ephemeris data available to users are recorded on 
a sequence of JPL Ephemeris Tapes. Each set of ephem- 
eris tapes in the sequence consists of three tapes which 
collectively cover the years 1950 through 2QOO with over- 
laps between tapes, and which carry tabulations of rec- 
tangular coordinates and velocity components of the 
moon and the nine planets with respect to the mean 
equator and equinox of 1950.0, plus nutations in longi- 
tude and obliquity, and their rates, plus modified 
second and fourth differences of these quantities to facili- 
tate interpolation. The format of the ephemeris tapes is 
defined in Refs. 91 and 92. 

The aim of the JPL Ephemeris Tape System is to main- 
tain ephemeris tapes containing the most accurate pre- 
dictions of lunar and planetary motion available. The 
system was designed to prevent degradation of the accu- 
racy of source data during the data processing. The 
principal provisions for ensuring the accuracy of the data 
include the following: 

(1) Positions and velocities are carried as double- 
precision floating point numbers (i.e., to approxi- 
mately 16 decimal places). Thus, predictions more 
accurate than those now available can be assimi- 
lated into the Ephemeris Tape System. 

(2) Intervals of tabulation were chosen so that the use 
of Everett's interpolation formula retaining second 
and fourth modified differences yields sufficient 
accuracy. 

(3) Formal procedures for checking each step of the 
processing of ephemeris data have been instituted 
to ensure that the published ephemerides are free 
from human and mechanical error. 

The data in any set of three ephemeris tapes are com- 
plete over the years 1950 through 2000-in fact, they are 
generally more complete than any particular problem 
would require. Generation of a new set of JPL Ephemeris 
tapes is only a question of data processing; no changes 
in the system are required. Revision of ephemeris tapes 
is simplified by maintaining tape libraries and system 
data-processing programs. Only a few weeks are required 
for the generation of a new set of ephemeris tapes, in- 
cluding full checking and documentation. Careful docu- 
mentation of these tapes is required so that questions 
concerning the origin, accuracy, and format of data can 
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be answered quickly and correctly. This documentation 
is achieved by a system of internal memoranda by which 
the contents of each tape are identified. This identifica- 
tion is repeated, in part, on each tape. 

A clear distinction must be maintained between the 
version of the JPL Ephemeris Tapes actually available for 
external distribution (the Export Ephemeris) at a given 
point in time and other ephemerides generated under the 
Ephemeris Tape System and used for special purposes 
within JPL. This latter category includes obsolete export 
versions, intermediate steps in the production of export 
versions, special-purpose experimental ephemerides, and 
ephemerides that represent further development beyond 
the present Export Ephemeris, but which have not been 
approved for export purposes. An ephemeris is not granted 
export status until extensive use with real data has 
demonstrated it to be clearly superior to the current 
Export Ephemeris, nor until adequate documentation is 
available. This means that an ephemeris may have been 
in limited use for several months before being made 
available to outside users. Any user to whom the highest 
attainable accuracy is important should keep informed 
as to the identification of the most current JPL Export 
Ephemeris available. 

The items distributed to users, which are the only 
parts of the JPL Ephemeris Tape System of direct inter- 
est to them, are collected into a JPL Ephemeris Com- 
puter Package, which contains the following items : 

(1) The ephemeris interpolation subroutine. 

(2) A particular set of three JPL Ephemeris Tapes that 
carries the tabulation of data (the Export Ephem- 
eris). 

(3) The corresponding tape document, in the form of 
a JPL technical memorandum or technical report, 
that describes the data of item 2 in detail. 

The first item is not changed by revision or replace- 
ment of the last two. The sets of ephemeris tapes, and 
the three tapes in each set (item 2), are given distinct 
alphanumeric names, which are repeated in the title of 
the relevant tape document in a BCD label on each tape 
to permit positive identification. The tape document 
(item 3), is assembled from the internal memoranda that 
identify the various library tapes used for the develop- 
ment of the corresponding set of JPL Ephemeris Tapes. 

The following sections describe the presently available 
Export Ephemeris, referred to as Development Ephem- 

eris No. 19 (DE 19), as well as the status of the ephemeris 
improvement effort. 

8. Lunar Ephemeris 

1. Export Ephemeris. The current Export Ephemeris, 
DE 19, contains JPL Lunar Ephemeris No. 4 (LE 4). 
The rectangular coordinates of the moon are significantly 
different from those contained in the original Export 
Ephemeris released in 1964 (Ref. 93). The changes that 
have been made are fully discussed in Ref. 94. The data 
were obtained as discussed below. The basic data con- 
sisted of the evaluation of the Improved Brown Lunar 
Theory reported in Ref. 93, which gave the parallax, 
semidiameter, and longitude and latitude referred to the 
mean ecliptic and equinox of date, partially corrected 
for aberration. These data have been extended in accu- 
racy by the application of transformation corrections 
(Ref. 95). A one-term correction in longitude, suggested 
by Dr. W. J. Eckert as being indicated by a new solution 
to the lunar problem (Ref. 96), has been added. The 
removal of aberration, rendering the ephemeris strictly 
geometric, has been performed by means of analytically 
derived relations (Ref. 97), eliminating the need for nu- 
merical iteration procedures used previously. In addi- 
tion, corrections were derived for introducing the new 
earth-moon mass ratio, based on Mariner II data and 
adopted by the IAU in 1964. These corrections have 
been applied, as has the new value of the constant of sine 
parallax which was adopted at the same time. Thus, the 
ephemeris is consistent with the current IAU astronom- 
ical constants (Ref. 7), excepting the earth oblateness. 
Subsequent to these modifications, the data were con- 
verted to rectangular coordinates, referred to the mean 
equator and equinox 1950.0, and expressed in earth radii. 

The computations of the transformation corrections 
were checked against comparison computations provided 
by Dr. Eckert and by the U. S. Nautical Almanac Office. 
The other computations were compared with extensive 
Nautical Almanac Office computations and with detailed 
hand computations for one epoch. 

Lunar velocity components were obtained by high- 
order numerical differentiation. 

Three error sources are known to exist in these lunar 
data: (1) spacecraft trajectory data indicate that IAU 
values for the gravitational constants of earth and moon 
still require signscant adjustment; (2)  an archaic value 
of J, for earth is embedded in the ephemeris; and (3) the 
theory suffers from significant truncation error in the 
planetary terms. 
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It is possible for the user to make a first-order correc- 
tion to compensate for the first of these error sources. 
Kepler's third law, as it applies to the lunar motion, is18 

The ephemeris, however, is given in "earth radii," 
related to the mean distance through the constant of sine 
parallax 

These two relations (Eqs. 116 and 117) are satisfied by 
the IAU System of Astronomical Constants. If better 
values of GE and are known, the major part of their 
effect on the lunar ephemeris can be accounted for by 
holding the vaIues of n and sin I& fixed and computing 
the value of Rem corresponding to the new system. 
Thus, Rem no longer represents the true earth radius, but 
is only a scaling factor for the lunar ephemeris. Table 20 
lists the currently recommended constants for use with 
the lunar ephemeris, as well as their IAU values. The 
effect of the recommended Rem is to move the moon 
approximately 0.6 km closer to earth than is the case 
with the IAU system. 

Table 20. Constants appropriate for the lunar ephemeris" 

functions of time, were obtained by formal integration of 
the equations of motion, suitably expanded in series 
form. The author of such a theory must exercise judge- 
ment in determining the precision to which the expres- 
sions are carried. If the Theory contains omissions of 
terms that are significantly large, then the Theory does 
not predict positions that are strictly in accordance with 
the law of gravitation. The Brown Lunar Theory suffers 
from such omissions; it is no slur upon Brown to admit 
this, for he would have had to be a remarkable visionary 
to foresee the demands that technology would make on 
his theory half a century after its completion. Clemence 
(Ref. 98) has estimated that the errors due to neglected 
planetary perturbation terms might exceed 0.2 km in 
longitude and latitude. This estimate has recently been 
verified, both computationally and observationally (Refs. 
33 and 34). The maximum range error from this cause 
exceeds 0.5 km. 

These findings indicate that, at an exceptional time 
when all error sources experienced maximum values, the 
geocentric position predicted by LE 4 could be in error 
by 1.2 km. A realistic estimate of the 1 - u uncertainty 
is 0.4 km in geocentric position. The range, which now 
seems to be known better than the individual rectangular 
coordinates, has maximum error and 1 - u uncertainty 
of approximately 0.6 and 0.2 km, respe~tive1y.l~ 

Recommended for use 
with LE 4 (DE 19) 

Constant 

Earth gravitational 398603.0 

Earth-moan mass ratio, p-l 81.30 81.301 0 
Scale factor, Re, 6378.1 60 6378.1492 kin 

constant, GE 

I =These values supersede those given in Refs. 92 and 94. 

The Brown Lunar Theory was constructed on the basis 
of a value of 0.00111157 for J z  of the earth. The modern 
value of 0.0010827 is not represented in LE 4. The errors 
due to this cause have maximum values of approximately 
0.4 km in both longitude and latitude, with periods of 
about 19 years for longitude and 1 month for latitude. 
No observable error in radial distance arises from this 
cause. 

The Lunar Theory consists of algebraic expressions for 
the geocentric spherical coordinates of the moon. These 
expressions, Fourier series whose parameters are explicit 

''FZ is a constant arising in the derivation of the Lunar Theory. Its 
value is 0.99909 3419 75298. 

In addition to these known error sources, the ephem- 
eris is doubtless contaminated in other ways. There is an 
ambiguity in the construction of the Improved Brown 
Lunar Theoryz0 associated with a monthly latitude fluctu- 
ation of 75-m amplitude. I t  is suspected that another error 
source may exist in the fitting of observations to the 
Lunar Theory (Ref. 99), which would have significant 
effects on longitude and latitude, but not range. This 
study is not yet complete, nor the suspicion verified; 
therefore, it is not possible to estimate its implications 
for the JPL ephemeris. 

2. Recent lunar ephemeris development. At present, 
the best long-range lunar ephemeris generated at JPL 
is LE 6. Theoretical correction terms were applied to 
LE 4 to incorporate the modern value of J z .  Therefore, 
this error source in LE 4 has been eliminated. Although 
LE 6 has not yet been tested against observational data, 
it may be expected that the maximum error in geocentric 
position at an exceptional time has been reduced to 

"These figures, based on more recent information, supersede those 

"Private communication, T. C. Van Flandern, April 30, 1968. 
given in Ref. 92, page 2. 
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approximately 0.8 km, with a 1 - u value of perhaps 
0.3 km. The range is unaffected by this modification. 
LE 6, which is fully documented in Ref. 100, has been 
incorporated into DE 43, whose planetary data are dis- 
cussed below. 

An effort is now underway to construct a long-range 
lunar ephemeris by numerical integration; however, this 
work has not yet been brought to a satisfactory conclu- 
sion (Ref. 33). 

C. The Planetary Ephemerides 

1. Export Ephemeris. The planetary ephemerides in- 
cluded in DE 19 are single-body numerical integrations of 
the differential equations of planetary motion, with epoch 
values chosen so as to obtain a Gaussian least-squares 
fit to some standard source positions for each body. The 
differential equations contain a relativity term based on 
the Schartzschild metric; those for the earth-moon bary- 
center consider earth and moon as separate bodies. The 
program used for these computations was a modified 
version of that described in Ref. 101. After each new 
integration fit, plots were made of the residuals, and the 
new fitted ephemeris was automatically merged into 
a new ephemeris system to provide the positions of the 
perturbing planets from which the perturbing attractions 
on the next planet to be fitted were calculated. In each 
case, the numerical integration used a predictor-corrector 
second-sum method with fourteenth differences of the 
accelerations retained. A %-day integration step size was 
used for Mercury; a 2-day step size was used for Venus 
and the earth-moon barycenter and a 4-day step size 
was used for Mars and the outer planets. 

Values of the surdplanet mass ratios that were used are 
those in the current IAU system (Ref. 7, see also Sec- 
tion V-A). Equations of condition for radial distance, 
latitude, and longitude factored by the cosine of the 
latitude were formed at 2-day intervals for Mercury, and 
at 4-day intervals for Venus, the earth-moon barycenter, 
Mars, and the outer planets. These equations were ac- 
cumulated into normal equations and, at the completion 
of integration, were solved for differential corrections to 
the ecliptic Keplerian elements a, e, I ,  a, W, and M,, 
osculating at the epoch (JED 243 3280.5). In particular, 
the quantities AM, 4- AT, Ap, Aq ,  eAr, Aa/a, and A e  
obtained as a solution to the normal equations were 
solved for ha, Ae, AI, AQ, A%, and AM,, where AW was 
then obtained from A; by subtraction of AQ. These cor- 
rections were then added to the osculating elements at 
epoch, giving corrected osculating elements and a cor- 
responding new direction cosine matrix PQR. The 

corrected osculating elements and corresponding new 
direction cosine matrix PQR were then used to obtain 
new position-velocity coordinates at epoch. The integra- 
tion was then started again with the new xoyoxo and 
koyoi,. This process was repeated until no further sig- 
nificant reduction in the sum of the squares of residuals 
could be made. 

The integration was performed in the mean equatorial 
system of 1950.0. The value assigned to the obliquity to 
transform between the equatorial and ecliptic system 
was E = 0.409 206 194 142 9905 rad. 

The source positions to which the integrations were 
fitted are summarized in Table 21. The statistical sum- 
mary given in Ref. 92 indicates that the residuals 
(source-DE 19) are smaller than the discordances be- 
tween the source data and observations. Therefore, the 
error bounds on DE 19 will be, in fact, the error bounds 
on the source data. Table 22 estimates the uncertainties 

Table 21. Source positions for DE 19 

Planet 

Mercury 
Venus 
Earth-moon 
Mars 
Jupiter 
Saturn 
Uranus 
Neptune 
Pluto 

Source 

Newcomb theory with Clemence corrections 
Newcomb theory (no corrections) 
Newcomb theory (no corrections) 
Clemence theory 
SSEC integration with Clemence corrections 
SSEC integration with Clemence corrections 
SSEC integration with Clemence corrections 
SSEC integration with Clemence corrections 
SSEC integration with Clemence corrections 

Planet 

References 

102 
103 
104 
105,106 
107,108 
107,108 
107,108 
107,108 
107,108 

Table 22. Uncertainty estimates for the 
planetary positions in DE 19 

Uncertainty 
estimate, 

km 

Mercury 

Venus 

Earth-moon 

Mars 

Jupiter 
Saturn 
Uranus 
Neptune 
Pluto 

200-300 

300-500 

150-300 

200-400 

2000 
2000 
3000 
6000 

2 x 106 

I Basis for estimate 

Refs. 102, 64, radar observations and JPL 

Refs. 21, 64, radar observations and JPL 

Refs. 21, 64, and JPL ephemeris 

Refs. 105, 106, 67, radar observations and 

Refs. 107, 108 
Refs. 107, 108 
Refs. 107, 108 
Refs. 107, 108 
Ref. 109 

ephemeris development 

ephemeris development 

development 

JPL ephemeris development 
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Table 23. Coordinates and osculating elements for DE 19 at JED 2433280.5 

x = 0.1429 7052 9471 8901D 00 AU 
y = 0.6470 0406 9944 5343D 00 AU 
z = 0.2824 8152 5073 4543D 00 AU 
3 = -0.1989 3793 1396 6423D - 01 AU/day 
i = 0.31 13 2345 4293 38530 - 02 AU/day 
t = 0.2659 4964 8941 4391 D - 02 AU/day 

Ecliptic elements I Equatorial rectangular coordinates I 

a = 0.7233 3519 4140 1882D 00 AU 
n = 0.2796 2279 9327 9817D - 01 rad/day 
e = 0.6810 9366 0405 9934D - 02 
I = 0.5923 9147 6374 4428D - 01 rad 

sd = 0.1330 5193 1376 60871) 01 rad 
w = 0.9562 7719 8582 3581D 00 rad 

Mo = OS378 2134 9887 7672D 01 rad 

I Mercury 

= -0.1363 6133 0110 0 8 6 9 ~  00 AU 
= 0.8933 9775 6948 92100 00 AU 

z = 0.3874 5843 1572 1408D 00 AU 
i = -0.1732 0015 4902 0189D - 01 AU/day 
p = -0.2244 2676 7908 65031) - 02 AU/day 
i = -0.9733 4185 6786 7504D - 03 AU/day 

x = 0.3439 2628 2595 05120 00 AU 
y = 0.4561 2086 7296 23491) -01 AU 

i = -0.8466 3252 471 8 1976D - 02 AU/day 
i = 0.2561 4777 71 29 3402D - 01 AU/day 
i = 0.1458 6762 7826 5551 D - 01 AU/day 

z = -0.1092 5237 7672 6325D - 01 AU 

a = 0.1000 0078 7236 0544D 01 AU 
n = 0.1720 1921 9320 3717D - 01 rad/day 
e = 0.1 675 01 14 1626 6023D - 01 
I = 0.3019 5435 1067 9661 D - 05 rad 

66 = 0.5866 9905 6919 31580 01 rad 
w = 0.2198 0752 5929 5807D 01 rad 

Mo = 0.6213 6054 9876 8146D 01 rad 

x = -0.1369 8312 5671 4650D 01 AU 
y = 0.8431 3716 1771 0496D 00 AU 
z = 0.4238 3609 4908 10330 00 AU 
i = -0.7384 5892 9362 9874D - 02 AU/day 
3 = -0.9477 3446 0757 8137D - 02 AU/day 
i = -0.41 51 6538 4773 5353D - 02 AU/day 

I Jupiter 

a = 0.1523 7494 5726 3805D 01 AU 
n = 0.9145 5781 6237 8094D - 02 rad/day 
e = 0.9326 0810 21 18 8317D - 01 
I = 0.3228 8222 5779 1756D - 01 rad 

a = 0.8581 8453 5514 8757D 00 rad 
w = 0.4991 5092 0674 7051D 01 rad 

Mo = 0.2938 8519 6401 74740 01 rad 

x = 0.3349 3566 4461 76241) 01 AU 
y = -0.3473 7659 9386 1919D 01 AU 
z = -0.1572 1612 0308 8752D 01 AU 
i = 

i = 
5 = 

0.5585 6549 6410 6917D - 02 AU/day 
0.4962 2486 591 8 9390D - 02 AU/day 
0.1992 2660 7644 61 81D - 02 AU/day 

I Saturn 

l 
a = 0.5202 6553 8209 94651) 01 AU 
n = 0.1450 2774 0969 2968D - 02 rad/day 
e = 0.4891 0755 7695 351 3D - 01 
I = 0.2281 0075 4232 1975D - 01 rad 
= 0.1744 6738 0279 8027D 01 rad 

w = 0.4777 3851 4538 7904D 01 rad 
Mo = 0.5279 6468 2494 4107D 01 rad 

x = -0.8972 4944 5632 1996D 01 AU 
y = 0.2279 7122 9499 01310 01 AU 
z = 0.1330 3683 2124 43730 01 AU 
3 = -0.1 858 2755 1290 4143D - 02 AU/day 
i = -0.4983 851 3 7862 831 8D - 02 AU/day 
i = -0.1980 2491 2780 6463D - 02 AU/day 

a = 0.9522 6887 3876 70560 01 AU 
n = 0.5854 6921 321 1 8279D - 03 rad/day 
e = 0.5349 2699 3422 3929D - 01 
I = 0.4345 261 1 3823 32231) - 01 rad 
0 = 0.1976 5298 1653 30960 01 rad 
w = 0.5883 0963 5241 1480D 01 rad 

Ma = 0.1 180 0954 0981 9556D 01 rad 
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Table 23 (contd) 

Equatorial rectangular coordinates Ecliptic elements 

x = -0.1002 9132 6963 73781) 01 AU 
y = 0.1732 3491 9404 7683D 02 AU 
z = 0.7604 8360 5654 0355D 01 AU 
2 = -0.3955 2571 5130 4471D - 02 AU/day 
i = -0.3759 0074 7195 8835D - 03 AU/day 
i = -0.1088 4370 6981 7871 D - 03 AU/day 

a = 0.1916 3718 8923 4575D 02 AU 
n = 0.2050 5541 8127 4017D - 03 rad/day 
e = 0.4620 9970 2713 5565D - 01 
I = 0.1347 3849 5921 9508D - 01 rad 
= 0.1287 3633 3315 9055D 01 rad 

w = 0.1703 6263 2661 5070D 01 rad 
Mo = 0.5005 8317 361 1 7874D 01 rad 

in the planetary positions; however, it should be men- 
tioned that these are quite subjective estimates. Some 
indication is given of the informational inputs to these 
estimates. The effect of the uncertainty in the astro- 
nomical units is not included. The estimates for the outer 
planets are based on the residuals of normal points, 
rather than discrete observations. 

x = -0.2919 4267 7427 1409D 02 AU 
y = -0.7719 2336 0132 2025D 01 AU 
z = -0.2427 2492 8084 79450 01 AU 
iC = 0.8207 8983 1005 6175D - 03 AU/day 
3 = -0.2772 0922 4647 0526D - 02 AU/day 
5 = -0.1 156 1171 1628 3100D - 02 AU/day 

The data presented in Table 23 are the DE 19 values 
at the epoch of the JPL Ephemeris Tape System, JED 
243 3280.5, of the equatorial rectangular coordinates and 
velocities and ecliptic elements osculating at the epoch. 
They are referred to the mean equinox, equator, and 
ecliptic of 1950.0 (JED 2433282.423). 

a = 0.3006 8940 4016 5808D 02 AU 
n = 0.1043 3151 1142 89491) - 03 rad/day 
e = 0.7942 6832 7095 8694D - 02 
I = 0.3098 3362 6924 2442D - 01 rad 

bd = 0.2291 3580 3446 34851) 01 rad 
w = 0.4587 6871 3081 3981D 01 rad 

Mo = 0.2809 7734 6432 2865D 01 rad 

2. Recent pkcnetary ephemeris development. The 
fundamental procedures under which the JPL Ephemeris 
Tape System is used to generate ephemerides has recently 
undergone drastic revision as a result of the continuing 
evolution of the system. The Planetary Orbit Determina- 
tion (PLOD) program has been replaced by the Solar 
System Data Processing System (SSDPS), which performs 
a simultaneous integration of all the major planets, dif- 

x = -0.2623 1756 1603 18491) 02 AU 
y = 0.2056 1529 7781 23751) 02 AU 
z = 0.1444 3690 2947 7839D 02 AU 
iC = -0.1315 7218 4319 35010-02 AU/day 
3 = -0.261 9 8366 1853 7051 D - 02 AU/day 
f = -0.4270 5125 4357 5085D - 03 AU/day 

ferentially correcting any subset to fit radar and/or optical 
observations. This program, using the planetary mass 
values adopted in Ref. 84, has been applied to the 1949- 
1967 USNO meridian circle data for all planets except 
Pluto and to all available 1964-1967 time-delay radar 
bounce data for Mercury, Venus, and Mars. The result- 
ing ephemeris, originally DE 40 (Ref. 64) but now com- 
bined with LE 6 as DE 43, has much improved positional 
data for the inner planets. The change is not very striking 
in the optical residuals, because of the inherent precision 
level of optical measures, but the range residuals are 
drastically 'reduced (Ref. 64). The deviations are reduced 
nearly two orders of magnitude for Mercury and one 
order for Venus and Mars. Figures 5 through 8 show the 
Mercury and Venus residuals with DE 35 and DE 43, 
before and after the correction. DE 35 is comparable to 
DE 19 for all bodies except Venus and earth-moon bary- 
center, which had received a previous correction. 

a = 0.3937 3641 3530 0176D 02 AU 
n = 0.6962 6357 0829 8997D - 04 rad/doy 
e = 0.2488 0330 5362 3924D 00 
I = 0.2996 7069 7085 9694D 00 rad 

bd = 0.1914 3375 5010 22581) 01 rad 
w = 0.1995 5817 5268 9690D 01 rad 

Mo = 0.5265 3021 0022 12780 01 rad 

The DE 43 positions for the planets Jupiter through 
Uranus are not likely to be significantly better than those 
of DE 19 even though the residuals for the restricted 
data set in DE 43 are smaller. This situation arises from 
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the circumstance that DE 19 is ultimately related to 
150 years of optical data, compared with 17 years for 
DE 43. No radar data, which would supply strength to 
the solution, exist for these objects. DE 43 positions of 
Neptune are decidedly better than those of DE 19 be- 
cause of a secular drift in the latter. 

The Pluto ephemeris in DE 43 is integrated from 
starting conditions obtained by fitting the new orbit of 
Pluto determined by Cohen, Hubbard, and Oesterwinter 
(Ref. 109); it has not been corrected because the cited 
work seems both exhaustive and definitive. The positional 
uncertainty is probably no greater than 5 X lo4 km. 
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Fig. 5. Mercury radar range residuals with DE 35 
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Appendix 

Notes on the IAU Constants 

(1) The value given for the number of ephemeris 
seconds in the tropical year at 1900 is taken 
from the definition of the ephemeris second 
that was adopted by the Comite International 
des Poids et Mesures (ProcBs VBrbaux des 
SBances, deuxikme s6rie, 25, 77, 1957). It is, in 
fact, derived from the coefficient of T, mea- 
sured in Julian centuries of 36525 days, in 
Newcomb‘s expression for the geometric mean 
longitude of the sun referred to the mean equi- 
nox of date. In the list, 1900 refers to- the 
fundamental epoch of ephemeris time, namely 
1900 January 0 at 12h ET, or to 1900.0, as 
appropriate; the values for constants 20-23 
also refer to the fundamental epoch. Through- 
out the list and this report the term “second” 
must be understood to mean the “ephemeris 
second.” 

(2)  The value of the Gaussian gravitational con- 
stant (k) is that  adopted by the IAU in 
1938, and serves to define the astronomical 
unit of length (AU) since the corresponding 
(astronomical) units of mass and time are al- 
ready defined. (The unit of mass is that of the 
sun and the unit of time is the ephemeris day 
of 86400 ephemeris see). The units of k are: 
(AU)3/2 (ephemeris day)-l (sun’s mass)-va. To 
simplify the later equations, an auxiliary con- 
stant k’, defined as k/86400, is introduced and 
a rounded value is given in the list. 

(3) The value for the measure of the AU in meters 
is a rounded value of recent radar determina- 
tions. 

(4) The value for the velocity of light is that 
recommended by the International Union of 
Pure and Applied Physics in September 1963. 

(5) The term “equatorial radius for earth” refers 
to the equatorial radius of an ellipsoid of revo- 
lution that approximates to the geoid (see also 
note 16). 

(6) The term “dynamical form-factor for earth” 
refers to the coefficient of the second harmonic 
in the expression for the earth’s gravitational 
potential as adopted by IAU Commission 7 in 
1961 (see also note 16). 

(7) The geocentric gravitational constant (GE) is 
appropriate for use for geocentric orbits when 
the units of length and time are the meter and 
the second; E denotes the mass of the earth 
including its atmosphere. Kepler’s third law for 
a body of mass M moving in an unperturbed 
elliptic orbit around the earth may be written: 

GE(l + W E )  = n2u3 

where n is the sidereal mean motion in rad/sec 
and u is the mean distance in meters. The value 
of GE is based on gravity measurements and 
observations of satellites. 

(8) Again, the mass of the earth includes the mass 
of the atmosphere. The reciprocal of 81.30 is 
0.0123001. 

(9) The value for the sidereal mean motion of the 
moon is consistent with the value of the tropical 
mean motion used in the improved lunar 
ephemeris, less the general precession in longi- 
tude. 

(10-12) The values of the principal constants defining 
the relative positions and motions of the equa- 
tor and ecliptic are those in current use. Secular 
terms and derived quantities are already tabu- 
lated elsewhere. 

(13) The rounded value 8’1794 for the solar parallax 
should be used except where extra figures are 
required to ensure numerical consistency. 

(14) The value of the light-time for unit distance is 
numerically equal to the number of light- 
secc-ds in 1 AU. Its reciprocal is equal to the 
velocity of light in AU/sec. 

(15) Apart from the factor F,, the constant of aber- 
ration is equal to the ratio of the speed of a 
hypothetical planet of negligible mass moving 
in a circular orbit of unit radius to the velocity 
of light; it is conventionally expressed in sec- 
onds of arc by multiplying by the number of 
seconds of arc in 1 rad. .The factor F ,  is the 
ratio of the mean speed of the earth to the speed 
of the hypothetical planet and is given by: 
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where 

no = the sidereal mean motion of the sun in 
rad/sec 

6 = the perturbed mean distance of the sun 
in AU 

e = the mean eccentricity of the earth's orbit. 

Newcomb's values for no, %, and e are of 
ample accuracy for this purpose. The factor F, 
and the constant of aberration take the follow- 
ing values: 

1800 

1900 

2000 

1.0001427 20.49583 

1.0001420 20.49582 

1.0001413 20.49581 

The rounded value 20'1496 should be used ex- 
cept where the extra figures are required to 
ensure numerical consistency. 

(16) The condition that the reference ellipsoid of 
revolution for the earth shall be an equipoten- 
tial surface implies that three parameters are 
sufficient to define its geometrical form and ex- 
ternal gravitational field, provided that the 
angular velocity (0) of the earth ind the rela- 
tive mass of the atmosphere (b) are assumed 
to be known. The variability of the rate of rota- 
tion of the earth can be ignored, and the mass 
of the atmosphere is only just significant; the 
required values are: 

0 = O.oooO72921 rad/sec; = O.OOO001 

The expressions for the flattening ( f )  and the 
apparent gravity at the equator (g , )  in terms of 
the primary constants are, to second order: 

3 1 9 15 39 
2 8 28 56 f = J, + - m + - 1; + -J2m - - m2 

3 27 1 - rue + - m + s J :  

where m = aeo2/ge is obtained by successive 
approximations. The new value of f is given 
here only for astronomical use (parallax cor- 
rections, etc). 

(17) The heliocentric gravitational constant corre- 
sponds to GE, but is appropriate for heliocentric 
orbits when the units are the meter and the 
second. 

(18-19) The derived values of the masses of the earth 
and of the earth plus moon differ from those 
currently in use, but will not supersede them 
completely until the system of planetary masses 
is revised as a whole (see note 24). 

(ZO) The perturbed mean distance of the moon is 
the semimajor axis of Hill's variational orbit, and 
differs from that calculated from Kepler's law 
by the factor F,, which depends on the well- 
determined ratio of the mean motions of the 
sun and moon (E. W. Brown, Memoirs Royal 
Astron. SOC., 53, 89, 1897). 

(21) The constant of sine parallax for the moon is 
conventionally expressed in seconds of arc by 
multiplying by the number of seconds of arc 
in 1 rad. The corresponding value of ra itself is 
3422!'608. 

(22) The constant of the lunar inequality is defined 
by the expression given and is conventionally 
expressed in seconds of arc. 

(23) The constant of the parallactic inequality is 
defined by the expression given; the coefficient 
F ,  is consistent with the corresponding quanti- 
ties in Brown's tables. 

(24) The system of planetary masses is that adopted 
in the current ephemerides and the values given 
for the reciprocals of the masses include the 
contributions from atmospheres and satellites. 
The value for Neptune is that adopted in the 
numerical integrations of the motions of 
the outer planets; the value used in Newcomb's 
theories of the inner planets is 19700. In plan- 
etary theory, the adopted ratio of the mass of 
the earth to the mass of the moon is 81.45 (com- 
pared with 81.53 in the lunar theory), and the 
ratio of the mass of the sun to the mass of 
the earth alone is 333432. This system of masses 
should be revised within the next few years 
when improved values for the inner planets are 
available from determinations based on space 
probes. 
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Correction Factors and limits 

To &st order, relative errors of the derived constants 
are given by: 

AK AA Ac AT, Af A], -- ---=- --- 
K - A  C TU f - I, 

A(GS) 3AA 
GS - A 

--- 

A(S/E) - A(GE) 3AA 
+A -- -- 

S/E GE 

The true values of the primary constants are believed 
to lie between the following limits: 

A = 149597 to 149601 X 1 W  m 

c = 299792 to 299793 X lo3 m s-l 

a, = 6378080 to 6378240 m 

J ,  = 0.0010824 to 0.0010829 

GE = 398600 to 398606 X lo9 m3 s2 

p-’ = 81.29 to 81.31 

n: = correct to number of places given 

p = 5026’(40 to 5026’.’90 

E = 23”27’08’!16 to. . .08!‘36 
N = !3!’200 to 9’.’210 

Correspondingly, the limits for the derived constants 
are : 

Ta = 8!’79388 to 8!‘79434 

rn = 499$01 to 499f016 

K = 20!’4954 to 20!’4960 

GS = 132710 to 132721 X 1015 m3 s - ~  

S/E = 332935 to 332968 

S/E(l+ p )  = 328890 to 328922 

f-1= 298.33 to 298.21) 

all = 384399 to 384401 X lo3 m 

sin r c  3422’!397 to 3422’(502 

L = 6‘!4390 to 6!’4408 

Pa = 124’!984 to 124!‘989 
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